【題目】已知直線:
,圓
:
.
(1)判斷直線與圓的位置關(guān)系,并證明你的結(jié)論;
(2)直線過直線
的定點(diǎn)且
,若
與圓
交與
兩點(diǎn),
與圓
交與
兩點(diǎn),求
的最大值.
【答案】(1)直線與圓相交(2)
【解析】
試題分析:(1)直線方程可整理為(x-2y+2)+(4x+3y-14)k=0,可得直線過定點(diǎn);求出圓心C到點(diǎn)P(2,2)的距離,與半徑比較,可得可得直線與圓的位置關(guān)系;(2)
,利用基本不等式,即可求AB+EF的最大值
試題解析:(1)直線與圓相交
證明:直線方程可整理為
所以 解得
所以直線過定點(diǎn)
圓方程可整理為
因?yàn)閳A心到點(diǎn)
的距離
為
由,所以直線與圓
相交.
(2)設(shè)點(diǎn)到直線
,
的距離分別為
則
又
所以
則
=
=
又因?yàn)?/span>
所以 (當(dāng)且僅當(dāng)
時(shí)取到等號(hào))
所以
所以
所以
所以的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以原點(diǎn)O為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓
相交于
、
兩點(diǎn),且
,求證:
的面積為定值并求出定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單調(diào)遞增數(shù)列中,
,且
成等差數(shù)列,
成等比數(shù)列,
.
(1)①求證:數(shù)列為等差數(shù)列;
②求數(shù)列通項(xiàng)公式;
(2)設(shè)數(shù)列的前
項(xiàng)和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列判斷:①一條直線和一點(diǎn)確定一個(gè)平面;②兩條直線確定一個(gè)平面;③三角形和梯形一定是平面圖形;④三條互相平行的直線一定共面其中正確的是_______.(寫出所有正確判斷的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. ,
為不共線向量,若
,則
B. 若,
為平面內(nèi)兩個(gè)不相等向量,則平面內(nèi)任意向量
都可以表示為
C. 若,
,則
與
不一定共線
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為.
(1)若記“”為事件
,求事件
發(fā)生的概率;
(2)若記“”為事件
,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
⑴從區(qū)間內(nèi)任取一個(gè)實(shí)數(shù)
,設(shè)事件
表示“函數(shù)
在區(qū)間
上有兩個(gè)不同的零點(diǎn)”,求事件
發(fā)生的概率;
⑵若聯(lián)系擲兩次一顆均勻的骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為)得到的點(diǎn)數(shù)分別為
和
,記事件
表示“
在
上恒成立”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競賽”活動(dòng). 為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì). 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的
,
的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式恒成立,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com