日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
          (1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
          (2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
          (3)從成績(jī)是[40,50)和[90,100]的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.

          【答案】
          (1)解:第一小組的頻率為0.010×10=0.1,第二小組的頻率為0.015×10=0.15,第三小組的頻率為0.015×10=0.15,第五小組的頻率為0.025×10=0.25,第六小組的頻率為0.005×10=0.05,所以第四小組的頻率為1﹣0.1﹣0.15﹣0.15﹣0.25﹣0.05=0.3.

          頻率/組距=0.3÷10=0.03,故頻率分布直方圖如圖


          (2)解:平均分超過60分的頻率為0.15+0.25+0.05+0.3=0.75,所以估計(jì)這次考試的及格率為75%.

          第一組人數(shù)0.10×60=6,第二組人數(shù)0.15×60=9,第三組人數(shù)0.15×60=9,第四組人數(shù)0.3×60=18,第五組人數(shù)0.25×60=15,第六組人數(shù)0.05×60=3,

          所以平均分為 =71


          (3)解:成績(jī)?cè)赱40,50)的有6人,在[90,100]的有3人,從中選兩人有 ,他們?cè)谕环謹(jǐn)?shù)段的有 ,

          所以他們?cè)谕环謹(jǐn)?shù)段的概率是


          【解析】(1)根據(jù)頻率直方圖的性質(zhì)求第四小組的頻率.(2)利用樣本進(jìn)行總體估計(jì).(3)根據(jù)古典概型的概率公式求概率.
          【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖和用樣本的頻率分布估計(jì)總體分布,掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖,是通過各小組數(shù)據(jù)在樣本容量中所占比例大小來(lái)表示數(shù)據(jù)的分布規(guī)律,它可以讓我們更清楚的看到整個(gè)樣本數(shù)據(jù)的頻率分布情況,并由此估計(jì)總體的分布情況即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時(shí)緊貼水池周邊建一圈理想的無(wú)寬度步道,要求總預(yù)算費(fèi)用不超過萬(wàn)元,水池造價(jià)為每平方米元,步道造價(jià)為每米元.

          (1)當(dāng)分別為多少時(shí),可使廣場(chǎng)面積最大,并求出最大值;

          (2)若要求步道長(zhǎng)為米,則可設(shè)計(jì)出水池最大面積是多少.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)點(diǎn)P的坐標(biāo)為(x﹣3,y﹣2).
          (1)在一個(gè)盒子中,放有標(biāo)號(hào)為1,2,3的三張卡片,現(xiàn)在從盒子中隨機(jī)取出一張卡片,記下標(biāo)號(hào)后把卡片放回盒中,再?gòu)暮凶又须S機(jī)取出一張卡片記下標(biāo)號(hào),記先后兩次抽取卡片的標(biāo)號(hào)分別為x、y,求點(diǎn)P在第二象限的概率;
          (2)若利用計(jì)算機(jī)隨機(jī)在區(qū)間[0,3]上先后取兩個(gè)數(shù)分別記為x、y,求點(diǎn)P在第三象限的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】12分)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2)

          1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數(shù),求P(X1)X的數(shù)學(xué)期望;

          2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ–3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

          )試說(shuō)明上述監(jiān)控生產(chǎn)過程方法的合理性;

          )下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

          9.95

          10.12

          9.96

          9.96

          10.01

          9.92

          9.98

          10.04

          10.26

          9.91

          10.13

          10.02

          9.22

          10.04

          10.05

          9.95

          經(jīng)計(jì)算得,,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,,16

          用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μσ(精確到0.01).

          附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ<Z<μ+3σ)=0.997 40.997 4160.959 2,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形, 且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

          (1)求證:AB∥平面PCD;
          (2)求證:BC⊥平面PAC;
          (3)若M是PC的中點(diǎn),求三棱錐C﹣MAD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=
          (1)求證:平面PAD⊥平面PCD;
          (2)試在棱PB上確定一點(diǎn)E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
          (3)在(2)的條件下,求二面角E﹣AC﹣P的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的幾何體中,四邊形ABCD是平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB= ,EF=1,BC= ,且M是BD的中點(diǎn)..
          (1)求證:EM∥平面ADF;
          (2)求直線DF和平面ABCD所成角的正切值;
          (3)求二面角D﹣AF﹣B的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中: (Ⅰ)求證:AC∥平面A1BC1
          (Ⅱ)求證:平面A1BC1⊥平面BB1D1D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為(
          A.[﹣1,2]
          B.[﹣2,1]
          C.[﹣3,﹣2]
          D.[﹣3,1]

          查看答案和解析>>

          同步練習(xí)冊(cè)答案