【題目】在平面直角坐標系中,拋物線
,斜率為
的直線
經(jīng)過
焦點,且與
交于
兩點滿足
.
(1)求拋物線的方程;
(2)已知線段的垂直平分線與拋物線
交于
兩點,
為線段
的中點,記點
到直線
的距離為
,若
,求
的值.
【答案】(1);(2)
.
【解析】分析:(1)設(shè)的方程:
,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系表示
,即可得到結(jié)果; (2)由(1)可知
,
,設(shè)
的中點
,則
的中垂線
的方程:
,
的方程與
聯(lián)立,利用根與系數(shù)關(guān)系表示R點坐標,從而得到
點到
:
的距離,利用弦長公式表示
,由
,解得k的值.
詳解:(1)由已知,的方程:
,設(shè)
,
由,得:
,
,
,
由已知得:,
拋物線方程
;
(2)由第(1)題知,
,
方程即:
,
,
設(shè)的中點
,
則:,
,
所以的中垂線
的方程:
,即
將的方程與
聯(lián)立得:
,
設(shè),則
點到
:
的距離
所以
由已知得:,得
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|.
(1)將函數(shù)f(x)寫成分段函數(shù);
(2)判斷函數(shù)的奇偶性,并畫出函數(shù)圖象.
(3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線
(1)求證:直線過定點;
(2)求直線被圓
所截得的弦長最短時
的值;
(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有
為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若對任意實數(shù)都有函數(shù)
的圖象與直線
相切,則稱函數(shù)
為“恒切函數(shù)”,設(shè)函數(shù)
,其中
.
(1)討論函數(shù)的單調(diào)性;
(2)已知函數(shù)為“恒切函數(shù)”,
①求實數(shù)的取值范圍;
②當取最大值時,若函數(shù)
也為“恒切函數(shù)”,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)作出函數(shù)的圖象;
(2)求函數(shù)的單調(diào)區(qū)間,并指出其單調(diào)性;
(3)求(
)的解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用分別表示
的三個內(nèi)角
所對邊的邊長,
表示
的外接圓半徑.
(1),求
的長;
(2)在中,若
是鈍角,求證:
;
(3)給定三個正實數(shù),其中
,問
滿足怎樣的關(guān)系時,以
為邊長,
為外接圓半徑的
不存在,存在一個或存在兩個(全等的三角形算作同一個)?在
存在的情況下,用
表示
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓C過點
,焦點
,圓O的直徑為
.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P.
①若直線l與橢圓C有且只有一個公共點,求點P的坐標;
②直線l與橢圓C交于兩點.若
的面積為
,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com