日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),

          (I)求函數(shù)f(x)的解析式;

          (II)若對(duì)于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,求實(shí)數(shù)a的取值范圍;

          (III)設(shè)x1,x2,a1,a2>0,且a1+a2=1,求證:a1lnx1+a2lnx2≤ln(a1x1+a2x2).

          考點(diǎn):

          導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用;函數(shù)解析式的求解及常用方法;函數(shù)恒成立問題.

          專題:

          導(dǎo)數(shù)的綜合應(yīng)用.

          分析:

          (I)欲求函數(shù)f(x)的解析式,根據(jù)題意,即求出其中的f'(2)的值,故只須對(duì)函數(shù)求導(dǎo)后令x=2即可;

          (II)設(shè)F(x)=f(x)+g(x),對(duì)于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,只須a≥F(x)max即可,利用導(dǎo)數(shù)求函數(shù)F(x)的最大值,則實(shí)數(shù)a的取值范圍可求.

          (III)由(II),得F(x)=lnx﹣x≤﹣1,即lnx≤x﹣1,再分別令,,后利用不等式的性質(zhì)兩式相加,得到一個(gè)不等關(guān)系式,化簡即可證出結(jié)論.

          解答:

          解:(I)因?yàn)?sub>

          所以f′(x)=x﹣f′(2).(2分)

          令x=2,得f′(2)=1,

          所以f(x)=.(4分)

          (II)解:設(shè)F(x)=f(x)+g(x)=lnx﹣x,

          則F′,(5分)

          令F′(x)=0,解得x=1.(6分)

          當(dāng)x變化時(shí),F(xiàn)(x)與F′(x)的變化情況如下表:

          x

          (0,1)

          1

          (1,+∞)

          f′(x)

          +

          0

          f(x)

          極大值

          所以當(dāng)x=1時(shí),F(xiàn)(x)max=F(1)=﹣1.(9分)

          因?yàn)閷?duì)于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,

          所以a≥﹣1.(10分)

          (III)證明:由(II),得F(x)=lnx﹣x≤﹣1,即lnx≤x﹣1,

          ,得,

          ,得,(11分)

          所以

          因?yàn)閍1+a2=1,

          所以,

          所以a1lnx1﹣a1ln(a1x1+a2x2)+a2lnx2﹣a2ln(a1x1+a2x2)≤0,

          即a1ln1+a2lnx2≤(a1+a2)ln(a1x1+a2x2),

          所以a1lnx1+a2lnx2≤ln(a1x1+a2x2).(14分)

          點(diǎn)評(píng):

          本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的導(dǎo)函數(shù)在某一區(qū)間上大于0,原函數(shù)是增函數(shù),導(dǎo)函數(shù)小于0,原函數(shù)是減函數(shù),考查了利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,考查了分離變量法,是中檔題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (09年山東猜題卷)已知函數(shù)求:

          (I)求證:函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱,并求的值;

          (II)設(shè),且1<a1<2,求證+…+<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年遼寧卷理)(12分)

          已知函數(shù),

          (I)證明:當(dāng)時(shí),上是增函數(shù);

          (II)對(duì)于給定的閉區(qū)間,試說明存在實(shí)數(shù),當(dāng)時(shí),在閉區(qū)間上是減函數(shù);

          (III)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年湖南卷理)(12分)

          已知函數(shù),

          (I)設(shè)是函數(shù)圖象的一條對(duì)稱軸,求的值.

          (II)求函數(shù)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省十校聯(lián)合體高三(上)期初聯(lián)考數(shù)學(xué)試卷 (理科)(解析版) 題型:解答題

          已知函數(shù),
          (I)設(shè)x=x是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x)的值;
          (II)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年高考試題(福建卷)解析版(理) 題型:解答題

           

          (Ⅰ)已知函數(shù)。

          (i)求函數(shù)的單調(diào)區(qū)間;

          (ii)證明:若對(duì)于任意非零實(shí)數(shù),曲線C與其在點(diǎn)處的切線交于另一點(diǎn)

          ,曲線C與其在點(diǎn)處的切線交于另一點(diǎn),線段

          (Ⅱ)對(duì)于一般的三次函數(shù)(Ⅰ)(ii)的正確命題,并予以證明。

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案