日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓的右焦點(diǎn)為為常數(shù),離心率為,過焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
          (3)試問的值是否與直線的傾斜角的大小無關(guān),并證明你的結(jié)論
          (1)(2)(3)為定值

          試題分析:(1),得:,橢圓方程為  3分
          (2)當(dāng)時(shí),,得:
          于是當(dāng)=時(shí),,于是,
          得到      6分
          (3)①當(dāng)=時(shí),由(2)知  8分
          ②當(dāng)時(shí),設(shè)直線的斜率為,,則直線MN:
          聯(lián)立橢圓方程有,
          ,,  11分
          =+==

          綜上,為定值,與直線的傾斜角的大小無關(guān)  14分
          點(diǎn)評:橢圓中,離心率,第三問在判定是否為定值時(shí)需將直線分兩種情況:斜率存在與不存在,當(dāng)斜率存在時(shí)常聯(lián)立方程利用根與系數(shù)的關(guān)系求解
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在正方形中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,分別將線段十等分,分點(diǎn)分別記為,連接,過軸的垂線與交于點(diǎn)。

          (1)求證:點(diǎn)都在同一條拋物線上,并求拋物線的方程;
          (2)過點(diǎn)作直線與拋物線E交于不同的兩點(diǎn), 若的面積之比為4:1,求直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線:上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
          (Ⅰ)求拋物線的方程;
          (Ⅱ)設(shè)直線與拋物線交于不同兩點(diǎn),若滿足,證明直線恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
          (Ⅲ)試把問題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請寫出結(jié)論,不用證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          過點(diǎn)P(1,1)的直線將圓x2+y2=4分成兩段圓弧,要使這兩段弧長之差最大,則該直線的方程為       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如右圖,拋物線C:(p>0)的焦點(diǎn)為F,A為C上的點(diǎn),以F為圓心,為半徑的圓與線段AF的交點(diǎn)為B,∠AFx=60°,A在y軸上的射影為N,則∠=      

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于,兩點(diǎn).當(dāng)直線經(jīng)過橢圓的一個(gè)頂點(diǎn)時(shí),其傾斜角恰為

          (Ⅰ)求該橢圓的離心率;
          (Ⅱ)設(shè)線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),
          記△的面積為,△為原點(diǎn))的面積為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知F1、F2為雙曲線C:x²-y²=2的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=(     )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)圓的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,兩坐標(biāo)系長度單位一致,建立平面直角坐標(biāo)系.過圓上的一點(diǎn)作平行于軸的直線,設(shè)軸交于點(diǎn),向量
          (Ⅰ)求動點(diǎn)的軌跡方程;
          (Ⅱ)設(shè)點(diǎn) ,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點(diǎn),且經(jīng)過拋物線與橢圓兩個(gè)交點(diǎn)的弦過拋物線的焦點(diǎn),則橢圓的離心率為_____________

          查看答案和解析>>

          同步練習(xí)冊答案