日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓C:+=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓C1+y2=1和C2+=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
          (2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          【答案】分析:(1)橢圓C2與C1相似.先求得橢圓C2與橢圓C1的特征三角形的腰長和底邊長,可發(fā)現(xiàn)兩特征三角形相似,進(jìn)而可判斷兩橢圓相似.
          (2)先假設(shè)存在,得到點M,N的直線方程和中點坐標(biāo),然后聯(lián)立橢圓和直線消去y得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理可得到兩根之和,即得到MN中點x的值,代入到直線可確定y的值,再由MN的中點在直線上可求得t的值.
          解答:解:(1)橢圓C2與C1相似.
          因為C2的特征三角形是腰長為4,底邊長為2的等腰三角形,
          而橢圓C1的特征三角形是腰長為2,底邊長為的等腰三角形,
          因此兩個等腰三角形相似,且相似比為2:1
          (2)假定存在,則設(shè)M、N所在直線為y=-x+t,MN中點為(x,y).
          ∴5x2-8xt+4(t2-b2)=0.
          所以x==,y=
          中點在直線y=x+t上,所以有t=-
          點評:本題主要考查橢圓的基本性質(zhì)的簡單應(yīng)用和直線與橢圓的綜合問題.直線與圓錐曲線是高考的重點問題,經(jīng)常以壓軸題的形式出現(xiàn),一定要引起重視.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓C1
          x2
          4
          +y2=1和C2
          x2
          16
          +
          y2
          4
          =1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
          (2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          b2
          +
          y2
          a2
          =1(a>b>0)
          的左、右焦點分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點E在第一象限,與橢圓C相交于A、B兩點,且
          F2B
          =λ
          AF2

          (1)求證:切線l的斜率為定值;
          (2)若動點T滿足:
          ET
          =μ(
          EF1
          +
          EF2
          ),μ∈(0,
          1
          2
          )
          ,且
          ET
          OT
          的最小值為-
          5
          4
          ,求拋物線P的方程;
          (3)當(dāng)λ∈[2,4]時,求橢圓離心率e的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,F(xiàn)1、F2分別為橢圓C的左、右焦點,A(0,b),且
          F1A
          F2A
          =-2過左焦點F1作直線l交橢圓于P1、P2兩點.
          (1)求橢圓C的方程;
          (2)若直線l的傾斜角a∈[
          π
          3
          3
          ],直線OP1,OP2與直線x=-
          4
          3
          3
          分別交于點S、T,求|ST|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點為F1(1,0)、F2(-1,0),離心率為
          2
          2
          ,過點A(2,0)的直線l交橢圓C于M、N兩點.
          (1)求橢圓C的方程;
          (2)①求直線l的斜率k的取值范圍;
          ②在直線l的斜率k不斷變化過程中,探究∠MF1A和∠NF1F2是否總相等?若相等,請給出證明,若不相等,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•梅州一模)如圖,已知橢圓C:
          x2
          a2
          +y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)不過點A的動直線l與橢圓C相交于PQ兩點,且
          AP
          AQ
          =0.求證:直線l過定點,并求出該定點的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案