日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)為實(shí)數(shù),已知函數(shù)的導(dǎo)函數(shù)為,且.

          1)求的值;

          2)設(shè)為實(shí)數(shù),若對(duì)于任意,不等式恒成立,且存在唯一的實(shí)數(shù)使得成立,求的值;

          3)是否存在負(fù)數(shù),使得是曲線的切線.若存在,求出的所有值:若不存在,請(qǐng)說明理由.

          【答案】123

          【解析】

          1)求出,再由,即可求出值;

          2)由(1)的結(jié)論將問題轉(zhuǎn)化為恒成立,設(shè),即為,通過導(dǎo)數(shù)法求出,求出的取值范圍,再由唯一解,求出的值;

          3)設(shè)切點(diǎn)的橫坐標(biāo)為,求出切線斜率,結(jié)合已知得,將切點(diǎn)坐標(biāo)代入,整理得到關(guān)于的方程,轉(zhuǎn)化為關(guān)于的方程正數(shù)解的情況,即為與直線在第一象限交點(diǎn)情況,通過求導(dǎo),求出單調(diào)區(qū)間,以及最值,即可求解.

          1)因?yàn)?/span>,

          所以,

          .

          2)因?yàn)?/span>,

          所以恒成立.

          ,

          因?yàn)?/span>,且,

          所以,

          因此為時(shí),,單調(diào)遞減;

          當(dāng)時(shí),,單調(diào)遞增,

          所以,即

          當(dāng)時(shí),,

          故方程無解,

          當(dāng)時(shí),當(dāng)時(shí),由單調(diào)性知

          所以存在唯一的使得,即.

          3)設(shè)切點(diǎn)的橫坐標(biāo)為,則

          ,即,

          ,即

          原命題等價(jià)于存在正數(shù)使得方程成立.

          ,

          ,

          ,則,

          因此當(dāng)時(shí),,單調(diào)遞增,;

          當(dāng)時(shí),,單調(diào)遞減,

          .

          故存在唯一的正數(shù)使得方程成立,

          即存在唯一的負(fù)數(shù),

          使得是曲線的切線.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在上的函數(shù)同時(shí)滿足以下條件:①上為減函數(shù),上是增函數(shù);②是偶函數(shù);③處的切線與直線垂直.

          1)求函數(shù)的解析式;

          2)設(shè),若對(duì),使成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的個(gè)數(shù)為(

          為真為真的充分不必要條件;

          ②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;

          ③在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件發(fā)生的概率為

          ④已知隨機(jī)變量服從正態(tài)分布,且,則.

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足

          (1)求點(diǎn)M的軌跡C的方程;

          (2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過x軸上的定點(diǎn)?若過定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題中正確的是(

          ①已知隨機(jī)變量服從正態(tài)分布,且,則

          ②相關(guān)系數(shù)r用來衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱,越大,相關(guān)性越弱;

          ③相關(guān)指數(shù)用來刻畫回歸的效果,越小,說明模型的擬合效果越好;

          ④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域越狹窄,其模型擬合的精度就越高.

          A.①②B.①④C.②③D.③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)求函數(shù)的單調(diào)區(qū)間;

          2)若上存在一點(diǎn),使得成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

          (2)若是直線上一點(diǎn),是曲線上一點(diǎn),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          1時(shí),求的單調(diào)區(qū)間和最值;

          2)①若對(duì)于任意的,不等式恒成立,求的取值范圍;②求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案