設(shè)函數(shù)定義域為
,且
.
設(shè)點是函數(shù)圖像上的任意一點,過點
分別作直線
和
軸的垂線,垂足分別為
.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設(shè)為坐標(biāo)原點,求四邊形
面積的最小值.(7分)
(1)在
上是減函數(shù).(2)
;
(3)此時四邊形面積有最小值
.
解析試題分析:(1)、因為函數(shù)的圖象過點
,
所以 2分
函數(shù)在
上是減函數(shù). 4分
(2)、(理)設(shè) 5分
直線的斜率
則的方程
6分
聯(lián)立
9分
,
11分
(3) 12分
13分
∴, 14分
, 15分
∴ , 16分
17分
當(dāng)且僅當(dāng)時,等號成立.
∴此時四邊形面積有最小值
. 18分
考點:本題主要考查函數(shù)的性質(zhì),均值定理的應(yīng)用,向量的坐標(biāo)運算。
點評:綜合題,利用函數(shù)方程思想,得出面積表達(dá)式,進(jìn)一步運用均值定理求面積的最小值,對數(shù)學(xué)式子變形能力要求較高。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若不等式對任意的實數(shù)
恒成立,求實數(shù)
的取值范圍;
(2)設(shè),且
在
上單調(diào)遞增,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)為奇函數(shù),當(dāng)
時,
(如圖).
(Ⅰ)求函數(shù)的表達(dá)式,并補齊函數(shù)
的圖象;
(Ⅱ)用定義證明:函數(shù)在區(qū)間
上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)若的單調(diào)區(qū)間;
(2)若函數(shù)存在極值,且所有極值之和大于
,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
(1)若,求函數(shù)
在點(0,
)處的切線方程;
(2)是否存在實數(shù),使得
的極大值為3.若存在,求出
值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
把邊長為的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計接縫),設(shè)容器的高為
,容積為
.
(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當(dāng)x為多少時,容器的容積最大?并求出最大容積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com