日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x3+ax2+bx,且f′(-1)=0。
          (1)試用含a的代數(shù)式表示b,并求f(x)的單調(diào)區(qū)間;
          (2)令a=-1,設(shè)函數(shù)f(x)在x1,x2(x1<x2)處取得極值,記點(diǎn)M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,請(qǐng)仔細(xì)觀察曲線f(x)在點(diǎn)P處的切線與線段MP的位置變化趨勢(shì),并解釋以下問題:
          (i)若對(duì)任意的t∈(x1,x2),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定t的最小值,并證明你的結(jié)論;
          (ii)若存在點(diǎn)Q(n,f(n)),x≤n<m,使得線段PQ與曲線f(x)有異于P、Q的公共點(diǎn),請(qǐng)直接寫出m的取值范圍(不必給出求解過程)。

          解:(1)依題意,得

          從而


          ①當(dāng)a>1時(shí),
          當(dāng)x變化時(shí),的變化情況如下表:

          由此得,函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為。
          ②當(dāng)時(shí),,此時(shí)有恒成立,且僅在處,
          故函數(shù)f(x)的單調(diào)增區(qū)間為R;
          ③當(dāng)時(shí),,同理可得,函數(shù)f(x)的單調(diào)增區(qū)間為,
          單調(diào)減區(qū)間為
          綜上:當(dāng)時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;
          當(dāng)時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為R;
          當(dāng)時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為。
          (2)(i)由

          由(1)得f(x)增區(qū)間為,單調(diào)減區(qū)間為,
          所以函數(shù)f(x)在處取得極值,
          故M(),N()。
          觀察的圖象,有如下現(xiàn)象:
          ①當(dāng)m從-1(不含-1)變化到3時(shí),線段MP的斜率與曲線f(x)在點(diǎn)P處切線的斜率之差Kmp-的值由正連續(xù)變?yōu)樨?fù)。
          ②線段MP與曲線是否有異于H,P的公共點(diǎn)與Kmp-的m正負(fù)有著密切的關(guān)聯(lián);
          ③Kmp-=0對(duì)應(yīng)的位置可能是臨界點(diǎn),故推測(cè):滿足Kmp-的m就是所求的t最小值。
          下面給出證明并確定的t最小值
          曲線f(x)在點(diǎn)處的切線斜率

          段MP的斜率Kmp
          當(dāng)Kmp-=0時(shí),解得
          直線MP的方程為

          當(dāng)時(shí),上只有一個(gè)零點(diǎn),
          可判斷函數(shù)f(x)在上單調(diào)遞增,在上單調(diào)遞減,
          ,
          所以g(x)在上沒有零點(diǎn),
          即線段MP與曲線f(x)沒有異于M,P的公共點(diǎn)。
          當(dāng)時(shí),
          所以存在使得
          即當(dāng)時(shí),MP與曲線f(x)有異于M,P的公共點(diǎn)
          綜上,t的最小值為2。
          (ii)類似(i)于中的觀察,可得m的取值范圍為。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案