日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx-ax+-1(a∈R).
          (1)當(dāng)a=-1時(shí),求函數(shù)的單調(diào)區(qū)間;
          (2)當(dāng)0≤a<時(shí),討論f(x)的單調(diào)性.
          【答案】分析:(1)先求函數(shù)的定義域,然后利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.
          (2)求函數(shù)的導(dǎo)數(shù),通過討論a的取值,確定函數(shù)f(x)的單調(diào)性.
          解答:解:(1)函數(shù)的定義域?yàn)椋?,+∞),當(dāng)a=-1時(shí),
          由f'(x)>0,解得x>1,此時(shí)函數(shù)f(x)單調(diào)遞增.
          由f'(x)<0,解得0<x<1,此時(shí)函數(shù)f(x)單調(diào)遞減.
          所以函數(shù)f(x)的單調(diào)遞增區(qū)間是[1,+∞),單調(diào)遞減區(qū)間為(0,1].
          (2)因?yàn)閒(x)=lnx-ax+-1(a∈R).
          所以,
          令g(x)=ax2-x+1-a,(x>0),
          ①若a=0,g(x)=-x+1,當(dāng)x∈(0,1)時(shí),g(x)>0,此時(shí)f'(x)<0,此時(shí)f(x)單調(diào)遞減.
          當(dāng)x∈(1,+∞)時(shí),g(x)<0,此時(shí)f'(x)>0,此時(shí)f(x)單調(diào)遞增.
          ②若0時(shí),由f'(x)=0,解得,
          此時(shí),所以當(dāng)x∈(0,1)時(shí),g(x)>0,此時(shí)f'(x)<0,此時(shí)f(x)單調(diào)遞減.
          當(dāng)x∈(1,)時(shí),g(x)<0,此時(shí)f'(x)>0,此時(shí)f(x)單調(diào)遞增.
          當(dāng)x∈(,+∞)時(shí),g(x)>0,此時(shí)f'(x)<0,此時(shí)f(x)單調(diào)遞減.
          綜上所述,當(dāng)a=0時(shí),函數(shù)f(x)單調(diào)遞減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞).
          當(dāng)0時(shí),函數(shù)f(x)單調(diào)遞減區(qū)間是(0,1)和[),單調(diào)增區(qū)間是[1,].
          點(diǎn)評:本題主要考查利用函數(shù)的單調(diào)性研究函數(shù)的單調(diào)性問題,運(yùn)算量較大,綜合性較強(qiáng).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案