日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6b/6/sjveb3.png" style="vertical-align:middle;" />,若關(guān)于的不等式的解集為,求的值;
          (Ⅱ)當(dāng)時(shí),為常數(shù),且,,求的取值范圍.

          (Ⅰ);(Ⅱ).

          解析試題分析:(Ⅰ)根據(jù)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/e/1804z3.png" style="vertical-align:middle;" />,求得 ,得到;通過解一元二次不等式,解得.
          (Ⅱ)注意到,令,遵循“求導(dǎo)數(shù),求駐點(diǎn),討論區(qū)間導(dǎo)數(shù)值正負(fù),確定極值”等步驟,即可得到的范圍為.
          試題解析:(Ⅰ)由值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/e/1804z3.png" style="vertical-align:middle;" />,當(dāng)時(shí)有,
                           2分
          ,由已知
          解得      4分
          不等式的解集為,∴,
          解得                      6分
          (Ⅱ)當(dāng)時(shí),,所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ef/6/gs4be.png" style="vertical-align:middle;" />,,所以
          ,則     8分
          當(dāng)時(shí),單調(diào)增,當(dāng)時(shí),,單調(diào)減,
          所以當(dāng)時(shí),取最大值,     10分
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/63/f/zgvds3.png" style="vertical-align:middle;" />
          ,所以
          所以的范圍為     12分
          考點(diǎn):二次函數(shù),一元二次不等式,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          。
          (Ⅰ)求的極值點(diǎn);
          (Ⅱ)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
          (Ⅲ)證明:當(dāng)時(shí),。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (1)當(dāng)時(shí),求曲線處的切線方程;
          (2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (3)在(2)的條件下,設(shè)函數(shù),若對(duì)于 [1,2], [0,1],使成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),

          (Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;
          (Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
          (Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點(diǎn),過線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N,證明:C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不可能平行.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某商場(chǎng)預(yù)計(jì)2014年從1月起前個(gè)月顧客對(duì)某種商品的需求總量(單位:件)
          (1)寫出第個(gè)月的需求量的表達(dá)式;
          (2)若第個(gè)月的銷售量(單位:件),每件利潤(單位:元),求該商場(chǎng)銷售該商品,預(yù)計(jì)第幾個(gè)月的月利潤達(dá)到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),函數(shù)
          (I)試求f(x)的單調(diào)區(qū)間。
          (II)若f(x)在區(qū)間上是單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍:
          (III)設(shè)數(shù)列是公差為1.首項(xiàng)為l的等差數(shù)列,數(shù)列的前n項(xiàng)和為,求證:當(dāng)時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)的圖像在點(diǎn)處的切線方程為.
          (I)求實(shí)數(shù),的值;
          (Ⅱ)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若曲線處的切線相互平行,求的值;
          (2)試討論的單調(diào)性;
          (3)設(shè),對(duì)任意的,均存在,使得.試求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)的最大值為0,其中。
          (1)求的值;
          (2)若對(duì)任意,有成立,求實(shí)數(shù)的最大值;
          (3)證明:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案