【題目】某教研部門對本地區(qū)甲、乙、丙三所學(xué)校高三年級進行教學(xué)質(zhì)量抽樣調(diào)查,甲、乙、丙三所學(xué)校高三年級班級數(shù)量(單位:個)如下表所示。研究人員用分層抽樣的方法從這三所學(xué)校中共抽取6個班級進行調(diào)查.
學(xué)校 | 甲 | 乙 | 丙 |
數(shù)量 | 4 | 12 | 8 |
(1)求這6個班級中來自甲、乙、丙三所學(xué)校的數(shù)量;
(2)若在這6個班級中隨機抽取2個班級做進一步調(diào)查,
①列舉出所有可能的抽取結(jié)果;
②求這2個班級來自同一個學(xué)校的概率.
【答案】(1)1,3,2;(2)①見解析②
【解析】
(1)由題意,可得樣本容量與總體中的個體數(shù)的比,進而可求解甲乙丙三所學(xué)校的數(shù)量,得到答案;
(2)設(shè)6個班級來自甲、乙、丙三所學(xué)校的樣本分別為:甲;乙1,乙2,乙3;丙1,丙2利用列舉法求得基本事件的總數(shù),利用古典概型及其概率的計算公式,即可求解.
(1)因為樣本容量與總體中的個體數(shù)的比是,
所以樣本中包含三所學(xué)校的個體數(shù)量分別是,
,
,
所以這6個班級來自甲、乙、丙三所學(xué)校的數(shù)量分別為1,3,2.
(2)設(shè)6個班級來自甲、乙、丙三所學(xué)校的樣本分別為:甲;乙1,乙2,乙3;丙1,丙2.
“抽取2個班級”所有可能結(jié)果有:{甲,乙1},{甲,乙2},{甲,乙3},{甲,丙1},{甲,丙2},{乙1,乙2},{乙1,乙3},{乙1,丙1},{乙1,丙2},{乙2,乙3},{乙2,丙1},{乙2,丙2},{乙3,丙1},{乙3,丙2},{丙1,丙2},共15個,
記事件:“抽取的2個班級來自同一個學(xué)!,則事件
的所有可能結(jié)果有:{乙1,乙2},{乙1,乙3},{乙2,乙3},{丙1,丙2},共4個,
所以,即這2個班級來自同一個學(xué)校的概率為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形所在平面與半圓弧
所在平面垂直,
是半圓弧
上異于
,
的點.
(1)證明:平面平面
;
(2)若,
,當(dāng)三棱錐
的體積最大且二面角
的平面角的大小為
時,試確定
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點Q是圓上的動點,點
,若線段QN的垂直平分線MQ于點P.
(I)求動點P的軌跡E的方程
(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于B,C兩點,求證:直線AB、AC的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)的圖像在點
處的切線與直線
平行,求實數(shù)
的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若在函數(shù)定義域內(nèi),總有
成立,試求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長為2個單位)的頂點
處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走了幾個單位,如果擲出的點數(shù)為
,則棋子就按逆時針方向行走
個單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到起點
處的所有不同走法共有( )
A.21種B.22種C.25種D.27種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對在直角坐標系的第一象限內(nèi)的任意兩點,
作如下定義:
,那么稱點
是點
的“上位點”,同時點
是點
的“下位點”.
(1)試寫出點的一個“上位點”坐標和一個“下位點”坐標;
(2)設(shè)、
、
、
均為正數(shù),且點
是點
的上位點,請判斷點
是否既是點
的“下位點”又是點
的“上位點”,如果是請證明,如果不是請說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對任意實數(shù)
,總存在
,使得點
既是點
的“下位點”,又是點
的“上位點”,求正整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種大型醫(yī)療檢查機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準備一次性購買2臺這種機器,F(xiàn)需決策在購買機器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 10 | 20 | 15 |
以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率,記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標,由檢測結(jié)果得如圖所示的頻率分布直方圖:
(Ⅰ)求這件產(chǎn)品質(zhì)量指標的樣本平均數(shù)
和樣本方差
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布
,其中
近似為樣本平均數(shù)
近似為樣本方差
.
(i)利用該正態(tài)分布,求;
(ii)已知每件該產(chǎn)品的生產(chǎn)成本為元,每件合格品(質(zhì)量指標值
)的定價為
元;若為次品(質(zhì)量指標值
),除了全額退款外且每件次品還須賠付客戶
元。若該公司賣出
件這種產(chǎn)品,記
表示這件產(chǎn)品的利潤,求
.
附:.若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com