日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓長軸長與短軸長之差是2-2,且右焦點F到此橢圓一個短軸端點的距離為,點C(m,0)是線段OF上的一個動點(O為坐標原點)。
          (Ⅰ)求橢圓的方程;
          (Ⅱ)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得,并說明理由。
          【注:當直線BA的斜率存在且為k時,的方向向量可表示為(1,k)】
          解:(Ⅰ)由題意可知,
          ,解得:a=,b=c=1,
          ∴橢圓的方程為。
          (Ⅱ)由(Ⅰ)得F(1,0),所以0≤m≤1,
          假設(shè)存在滿足題意的直線l,設(shè)l的方程為y=k(x-1),
          代入,得,
          設(shè),則,   ①
          ,
          ,

          而AB的方向向量為(1,k),
          ,
          ∴當時,,即存在這樣的直線l;
          時,k不存在,即不存在這樣的直線l。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1
          以拋物線y2=4
          3
          x
          的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
          (2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線x2=
          1
          mn
          y
          異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
          (3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓長半軸與短半軸之比是5:3,焦距是8,焦點在x軸上,則此橢圓的標準方程是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:江蘇省常州市2006-2007學(xué)年度第一學(xué)期期末質(zhì)量調(diào)研高三數(shù)學(xué)試題 題型:044

          已知橢圓的離心率為,直線l:y=x+2與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切.

          (1)求橢圓C1的方程;

          (2)設(shè)橢圓C1的左焦點為F1,右焦點F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2垂直平分線交l2于點M,求點M的軌跡C2的過程;

          (3)設(shè)C2與x軸交于點Q,不同的兩點R,S在C2上,且滿足的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓長軸長與短軸長之差是,且右焦點F到此橢圓一個短軸端點的距離為,點是線段上的一個動點(為坐標原點).

          (I)求橢圓的方程;

          (Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,

          使得,并說明理由. 

          【注:當直線BA的斜率存在且為時,的方向向量可表示為

          查看答案和解析>>

          同步練習(xí)冊答案