日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它們所表示的曲線可能是( 。
          A.B.C.D.
          方程ax2+by2=ab化成:
          x2
          b
          +
          y2
          a
          =1
          ,ax+by+c=0化成:y=-
          a
          b
          x-
          c
          b
          ,
          對于A:由雙曲線圖可知:b>0,a<0,∴-
          a
          b
          >0,即直線的斜率大于0,故錯;
          對于C:由橢圓圖可知:b>0,a>0,∴-
          a
          b
          <0,即直線的斜率小于0,故錯;
          對于D:由橢圓圖可知:b>0,a>0,∴-
          a
          b
          <0,即直線的斜率小于0,故錯;
          故選B.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知線段AB的端點B的坐標(biāo)是(1,2),端點A在圓(x+1)2+y2=4上運動,點M是AB的中點.
          (1)若點M的軌跡為曲線C,求此曲線的方程;
          (2)設(shè)直線l:x+y+3=0,求曲線C上的點到直線l距離的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標(biāo)原點,過點M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
          (Ⅰ)寫出拋物線C2的標(biāo)準(zhǔn)方程;
          (Ⅱ)若
          AM
          =
          1
          2
          MB
          ,求直線l的方程;
          (Ⅲ)若坐標(biāo)原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,橢圓C1
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓C1的長軸三等分,橢圓C1右焦點到右準(zhǔn)線的距離為
          2
          4
          ,橢圓C1的下頂點為E,過坐標(biāo)原點O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點A、B.
          (1)求橢圓C1的方程;
          (2)若直線EA、EB分別與橢圓C1相交于另一個交點為點P、M.
          ①求證:直線MP經(jīng)過一定點;
          ②試問:是否存在以(m,0)為圓心,
          3
          2
          5
          為半徑的圓G,使得直線PM和直線AB都與圓G相交?若存在,請求出所有m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率為
          3
          2
          ,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
          2
          =0
          相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)P(4,0),M,N是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PN交橢圓C于另一點E,求直線PN的斜率的取值范圍;
          (Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          若橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左右焦點分別為F1,F(xiàn)2,線段F1F2被拋物線y2=2bx的焦點F內(nèi)分成了3:1的兩段.
          (1)求橢圓的離心率;
          (2)過點C(-1,0)的直線l交橢圓于不同兩點A、B,且
          AC
          =2
          CB
          ,當(dāng)△AOB的面積最大時,求直線l和橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知直線l1過A(0,1),與直線x=-2相交于點P(-2,y0),直線l2過B(0,-1)與x相交于Q(x0,0),x0、y0滿足y0-
          x0
          2
          =1
          ,l1∩l2=M.
          (Ⅰ)求直線l1的方程(方程中含有y0);
          (Ⅱ)求點M的軌跡C的方程;
          (Ⅲ)過C左焦點F1的直線l與C相交于點A、B,F(xiàn)2為C的右焦點,求△ABF2面積最大時點F2到直線l的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓G:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          6
          3
          ,右焦點為(2
          2
          ,0),斜率為1的直線l與橢圓G交與A、B兩點,以AB為底邊作等腰三角形,頂點為P(-3,2).
          (Ⅰ)求橢圓G的方程;
          (Ⅱ)求△PAB的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          3
          2
          ,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點M與點N.
          (1)求橢圓C的方程;
          (2)求
          TM
          TN
          的最小值,并求此時圓T的方程;
          (3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標(biāo)原點,求證:|OR|•|OS|為定值.

          查看答案和解析>>

          同步練習(xí)冊答案