日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點(diǎn)為F(c,0),下頂點(diǎn)為A(0,-b),直線AF與橢圓的右準(zhǔn)線交于點(diǎn)B,若F恰好為線段AB的中點(diǎn).
          (1)求橢圓C的離心率;
          (2)若直線AB與圓x2+y2=2相切,求橢圓C的方程.
          分析:(1)由B在右準(zhǔn)線x=
          a2
          c
          上,且F(c,0)恰好為線段AB的中點(diǎn)可求得2c=
          a2
          c
          ,從而可求得其斜率;
          (2)由(1)可知a=
          2
          c,b=c,從而可設(shè)AB的方程為y=x-c,利用圓心O(0,0)點(diǎn)到直線y=x-c間的距離等于半徑2即可求得c,從而使問(wèn)題得到解決.
          解答:解 (1)因?yàn)锽在右準(zhǔn)線x=
          a2
          c
          上,且F(c,0)恰好為線段AB的中點(diǎn),
          所以2c=
          a2
          c
          ,…(2分)
          c2
          a2
          =
          1
          2
          ,所以橢圓的離心率e=
          2
          2
          .         …(4分)
          (2)由(1)知a=
          2
          c,b=c,所以直線AB的方程為y=x-c,即x-y-c=0,…(6分)
          因?yàn)橹本AB與圓x2+y2=2相切,所以
          |c|
          2
          =
          2
          ,…(8分)
          解得c=2.所以a=2
          2
          ,b=2.
          所以橢圓C的方程為
          x2
          8
          +
          y2
          4
          =1.           …(10分)
          點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì)與橢圓的標(biāo)準(zhǔn)方程,考查化歸思想與方程思想,求得橢圓的離心率是關(guān)鍵,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓C1
          x2
          4
          +y2=1和C2
          x2
          16
          +
          y2
          4
          =1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說(shuō)明理由;
          (2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對(duì)稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1的離心率為
          3
          2
          ,過(guò)橢圓C上一點(diǎn)P(2,1)作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于點(diǎn)A、B,直線AB與x軸交于點(diǎn)M,與y軸負(fù)半軸交于點(diǎn)N.
          (Ⅰ)求橢圓C的方程:
          (Ⅱ)若S△PMN=
          3
          2
          ,求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知橢圓C:
          x2
          36
          +
          y2
          20
          =1的左頂點(diǎn),右焦點(diǎn)分別為A,F(xiàn),右準(zhǔn)線為l,N為l上一點(diǎn),且在x軸上方,AN與橢圓交于點(diǎn)M.
          (1)若AM=MN,求證:AM⊥MF;
          (2)過(guò)A,F(xiàn),N三點(diǎn)的圓與y軸交于P,Q兩點(diǎn),求PQ的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•深圳一模)如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          3
          2
          ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
          (1)求橢圓C的方程;
          (2)求
          TM
          TN
          的最小值,并求此時(shí)圓T的方程;
          (3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR|•|OS|為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左頂點(diǎn),右焦點(diǎn)分別為A、F,右準(zhǔn)線為m.圓D:x2+y2+x-3y-2=0.
          (1)若圓D過(guò)A、F兩點(diǎn),求橢圓C的方程;
          (2)若直線m上不存在點(diǎn)Q,使△AFQ為等腰三角形,求橢圓離心率的取值范圍.
          (3)在(1)的條件下,若直線m與x軸的交點(diǎn)為K,將直線l繞K順時(shí)針旋轉(zhuǎn)
          π
          4
          得直線l,動(dòng)點(diǎn)P在直線l上,過(guò)P作圓D的兩條切線,切點(diǎn)分別為M、N,求弦長(zhǎng)MN的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案