日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下列推理中屬于歸納推理且結(jié)論正確的是(
          A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項(xiàng)和Sn=n2
          B.由f(x)=xcosx滿足f(﹣x)=﹣f(x)對(duì)?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
          C.由圓x2+y2=r2的面積S=πr2 , 推斷:橢圓 =1的面積S=πab
          D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推斷:對(duì)一切n∈N* , (n+1)2>2n

          【答案】A
          【解析】解:對(duì)于A,由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項(xiàng)和,是由特殊推導(dǎo)出一般性的結(jié)論,且 ,故正確;
          對(duì)于B,屬于演繹推理中的三段論,故不正確;
          對(duì)于C,是由圓類比橢圓,由圓的面積類比橢圓的面積,故屬于類比推理,故不正確;
          對(duì)于D,屬于歸納推理,n=6時(shí),結(jié)論不正確,故不正確
          故選A.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識(shí),掌握根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線 的左頂點(diǎn)為A,若雙曲線一條漸近線與直線AM平行,則實(shí)數(shù)a等于(
          A.
          B.
          C.3
          D.9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算,該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為: ,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.

          (1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?

          (2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知m∈R,復(fù)數(shù)z= +(m2+2m﹣3)i,當(dāng)m為何值時(shí),
          (1)z∈R;
          (2)z是純虛數(shù);
          (3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面第二象限;
          (4)(選做)z對(duì)應(yīng)的點(diǎn)在直線x+y+3=0上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x﹣y+1=0,當(dāng)x= 時(shí),y=f(x)有極值.
          (1)求a、b、c的值;
          (2)求y=f(x)在[﹣3,1]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PD⊥底面ABCD,點(diǎn)M、N分別是棱AB、CD的中點(diǎn).
          (1)證明:BN⊥平面PCD;
          (2)在線段PC上是否存在點(diǎn)H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請(qǐng)求出H點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若、是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為( )

          若直線,則在平面內(nèi)一定不存在與直線平行的直線.

          若直線,則在平面內(nèi)一定存在無(wú)數(shù)條直線與直線垂直.

          若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

          若直線,則在平面內(nèi)一定存在與直線垂直的直線.

          A. ①③ B. ②③ C. ②④ D. ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】記所有非零向量構(gòu)成的集合為V,對(duì)于 , ∈V, ,定義V( , )=|x∈V|x =x |
          (1)請(qǐng)你任意寫出兩個(gè)平面向量 ,并寫出集合V( , )中的三個(gè)元素;
          (2)請(qǐng)根據(jù)你在(1)中寫出的三個(gè)元素,猜想集合V( )中元素的關(guān)系,并試著給出證明;
          (3)若V( , )=V( , ),其中 ,求證:一定存在實(shí)數(shù)λ1 , λ2 , 且λ12=1,使得 1 2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值
          (1)求a,b的值;
          (2)求函數(shù)y=f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案