日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,點是圓上一動點,動點滿足,點在直線上,且.

          1)求點的軌跡的標準方程;

          2)已知點在直線上,過點作曲線的兩條切線,切點分別為,記點到直線的距離分別為,求的最大值,并求出此時點的坐標.

          【答案】1;(2,

          【解析】

          1)由題可得是線段的垂直平分線,所以可得,由橢圓的定義可知,點軌跡是以為焦點,以4為長軸長的橢圓,即可求得方程;

          2)設(shè),可知點處的切線的方程為,同理可得切線的方程為,故直線的方程為,表示出,;算出,求出其最大值即可.

          解:(1)由,可知為線段的中點,

          ,所以是線段的垂直平分線,故.

          因為點在直線上,所以.

          由橢圓的定義可知,點軌跡是以為焦點,以4為長軸長的橢圓,即,

          解得,

          另當(dāng)點坐標為時,重合,不符合題意,故的標準方程為.

          2)設(shè),所以曲線處的切線的方程為,又因為切線,所以.

          同理可得,故直線的方程為.

          所以.

          因為直線的方程為,所以,.

          又因為在直線的兩側(cè),

          所以

          ,

          所以

          ,

          ,

          當(dāng),即時,有最大值,

          此時點的坐標為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓的左、右焦點分別為、,,點A為橢圓C上異于左右頂點的任意一點,A關(guān)于原點O的對稱點為B,,且

          (Ⅰ)求橢圓C的標準方程;

          (Ⅱ)若A關(guān)于x軸的對稱點,設(shè)點,連接NA,直線NA與橢圓C相交于點E,直線x軸相交于點M,求點M的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的三棱錐中,是邊長為2的等邊三角形,的中位線,為線段的中點.

          1)證明:.

          2)若二面角為直二面角,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若,求的零點個數(shù);

          2)若,,證明:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體中,分別為線段的中點,為四棱錐的外接球的球心,點分別是直線上的動點,記直線所成角為,則當(dāng)最小時,

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

          1)求橢圓的方程;

          2)求的面積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼得爾布羅在20世紀70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個樹形圖:記圖乙中第行黑圈的個數(shù)為,則(1_______;(2______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

          年份

          2014

          2015

          2016

          2017

          2018

          年份代號

          1

          2

          3

          4

          5

          人均純收入

          5

          4

          7

          8

          10

          1)求關(guān)于的線性回歸方程;

          2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?

          附:回歸直線的斜率和截距的最小二乘估計公式分別為,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,以的中點O為球心,AC為直徑的球面交PDM(異于點D),交PCN(異于點C.

          1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結(jié)論);若不是,請說明理由;

          2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案