日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設正數(shù)數(shù)列{an} 的前n項和為 Sn,且對任意的n∈N*,Sn是an2和an的等差中項.
          (1)求數(shù)列{an} 的通項公式;
          (2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整數(shù)m,使得不等式Sn-1005>數(shù)學公式對一切滿足n>m的正整數(shù)n都成立?若存在,則這樣的正整數(shù)m共有多少個?并求出滿足條件的最小正整數(shù)m的值;若不存在,請說明理由.

          解:(1)由已知,∵Sn是an2和an的等差中項,∴2Sn=an2+an,且an>0.
          當n=1時,2a1=a12+a1,解得a1=1.
          當n≥2時,有2Sn-1=an-12+an-1
          于是2Sn-2Sn-1=an2-an-12+an-an-1,即2an=an2-an-12+an-an-1
          ∴an2-an-12=an+an-1,即(an+an-1)(an-an-1)=an+an-1
          ∵an+an-1>0,∴an-an-1=1(n≥2).
          ∴數(shù)列{an}是首項為1,公差為1的等差數(shù)列,
          ∴an=n.
          (2)∵an=n,∴Sn-1005>,得,∴>1005,∴n>2010.
          由題設,M={2010,2012,…,2998},
          因為m∈M,所以m=2010,2012,…,2998均滿足條件,且這些數(shù)組成首項為2010,公差為2的等差數(shù)列.
          設這個等差數(shù)列共有k項,則2010+2(k-1)=2998,
          解得k=495.
          故集合M中滿足條件的正整數(shù)m共有495個,滿足條件的最小正整數(shù)m的值為2010.
          分析:(1)根據(jù)Sn是an2和an的等差中項,可得2Sn=an2+an,且an>0,再寫一式,當n≥2時,有2Sn-1=an-12+an-1,兩式相減,化簡可得an-an-1=1(n≥2),所以數(shù)列{an}是首項為1,公差為1的等差數(shù)列,故求數(shù)列{an} 的通項公式;
          (2)利用Sn-1005>,求得n>2010,從而M={2010,2012,…,2998},這些數(shù)組成首項為2010,公差為2的等差數(shù)列,由此可得集合M中滿足條件的正整數(shù)m的個數(shù).
          點評:本題主要考查等差數(shù)列的性質,特別是等差數(shù)列的通項公式,考查了學生分析問題和解決問題的能力,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設正數(shù)數(shù)列{an}的前n項和Sn滿足Sn=
          1
          4
          (an+1)2

          (I)求數(shù)列{an}的通項公式;
          (II)設bn=
          1
          anan+1
          ,求數(shù)列{bn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設正數(shù)數(shù)列{an}的前n項之和是bn,數(shù)列{bn}前n項之積是cn,且bn+cn=1,則數(shù)列{
          1an
          }
          中最接近108的項是第
          10
          10
          項.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設正數(shù)數(shù)列{an}的前n項和為Sn,且Sn=
          1
          2
          (an+
          1
          an
          )
          ,(n∈N*).
          (Ⅰ)試求a1,a2,a3;
          (Ⅱ)猜想an的通項公式,并用數(shù)學歸納法證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設正數(shù)數(shù)列{an}前n項和為Sn,且對所有自然數(shù)n,有
          Sn
          =
          1+an
          2
          ,則通過歸納猜測可得到Sn=
          n2
          n2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設正數(shù)數(shù)列{an} 的前n項和為 Sn,且對任意的n∈N*,Sn是an2和an的等差中項.
          (1)求數(shù)列{an} 的通項公式;
          (2)在集合M={m|m=2k,k∈Z,且1000≤k≤1500中,是否存在正整數(shù)m,使得不等式Sn-1005>
          an22
          對一切滿足n>m的正整數(shù)n都成立?若存在,則這樣的正整數(shù)m共有多少個?并求出滿足條件的最小正整數(shù)m的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案