日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)已知?jiǎng)又本與橢圓相交于兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

           

          【答案】

          (Ⅰ);(Ⅱ)①;②.

          【解析】

          試題分析:(Ⅰ)根據(jù)已知條件可設(shè)橢圓方程為:,則有,,,求解即可得到的值,將對(duì)應(yīng)的解代入橢圓方程即可;(Ⅱ)①將直線方程代入橢圓方程求得,,求得兩點(diǎn)的橫坐標(biāo)之和為,由已知條件“中點(diǎn)的橫坐標(biāo)為”,得到,從而解得的值;

          ②根據(jù)①的兩點(diǎn)的坐標(biāo)求得③,結(jié)合、兩點(diǎn)坐標(biāo)滿足直線方程,將③式化簡(jiǎn)整理得,再由①中的根與系數(shù)的關(guān)系:,代入化簡(jiǎn)即可.

          試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041104055562612180/SYS201404110406461573824306_DA.files/image004.png">滿足,,

          解得,

          則橢圓方程為:.                3分

          (Ⅱ)①將代入中得,,

          ,

          設(shè),,則,

          因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041104055562612180/SYS201404110406461573824306_DA.files/image015.png">中點(diǎn)的橫坐標(biāo)為,所以,

          解得.            6分

          ②由①知,,

          所以

          .                  12分

          考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.橢圓的性質(zhì);3.方程的根與系數(shù)的關(guān)系;4.中點(diǎn)坐標(biāo)公式;5.平面向量的數(shù)量積

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
          A、
          1
          2
          B、
          2
          2
          C、
          3
          3
          D、以上均不對(duì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的離心率為
          1
          2
          ,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
          A、
          x2
          36
          +
          y2
          27
          =1
          B、
          x2
          36
          -
          y2
          27
          =1
          C、
          x2
          27
          +
          y2
          36
          =1
          D、
          x2
          27
          -
          y2
          36
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在由圓O:x2+y2=1和橢圓C:
          x2
          a2
          +y2
          =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
          6
          3
          ,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
          (1)求橢圓C的方程;
          (2)是否存在直線l,使得
          OA
          OB
          =
          1
          2
          OM
          2
          ,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知橢圓的離心率為
          2
          2
          ,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
          (2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開(kāi)家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開(kāi)家前能得到報(bào)紙(稱為事件A)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,A,B是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
          (1)若e=
          1
          2
          ,m=4,求橢圓C的方程;
          (2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過(guò)原點(diǎn),求e.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案