日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)a>0,集合A={x||x|≤a},B={x|x2﹣2x﹣3<0},

          (I)當(dāng)a=2時,求集合A∪B;

          (II)若A⊆B,求實數(shù)a的取值范圍.

          考點:

          絕對值不等式的解法;集合的包含關(guān)系判斷及應(yīng)用;并集及其運算;一元二次不等式的解法.

          專題:

          不等式的解法及應(yīng)用.

          分析:

          (I)解絕對值不等式求得集合A,解一元二次不等式求得集合B,再根據(jù)兩個集合的并集的定義求得A∪B.

          (II)根據(jù)集合A={x||x|≤a}={x|﹣a≤x≤a}(a>0),且A⊆B,可得,解不等式組求得a的范圍.

          解答:

          (I)解:因為集合A={x||x|≤2}={x|﹣2≤x≤2},(2分)

          集合B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},(4分)

          所以A∪B={x|﹣2≤x<3}.(7分)

          (II)解:集合A={x||x|≤a}={x|﹣a≤x≤a}(a>0),(9分)

          因為A⊆B,所以(11分)

          解得a<1,所以0<a<1,即a的范圍為(0,1).(13分)

          點評:

          本題主要考查絕對值不等式、一元二次不等式的解法,集合間的包含關(guān)系,屬于中檔題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a>0,集合A={(x,y)|
          x≤3
          x+y-4≤0
          x-y+2a≥0
          },B={(x,y)|(x-1)2+(y-1)2≤a2}.若點P(x,y)∈A是點P(x,y)∈B的必要不充分條件,則a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a>0,集合A={x||x|≤a},B={x|x2-2x-3<0},
          (I)當(dāng)a=2時,求集合A∪B;
          (II)若A⊆B,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a>0,集合A={x||x|≥2},B={x|(x-2a)(x+3)<0}.
          (Ⅰ)當(dāng)a=3時,求集合A∩B;
          (Ⅱ)若A∪B=R,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a>0,集合A={(x,y)|
          x≤3
          x+y-4≤0
          x-y+2a≥0
          },B={(x,y)|(x-1)2+(y-1)2≤a2}.若點P(x,y)∈A是點P(x,y)∈B的必要不充分條件,則a的取值范圍是      ( 。

          查看答案和解析>>

          同步練習(xí)冊答案