【題目】過直角坐標平面xOy中的拋物線y2=2px(p>0)的焦點F作一條傾斜角為的直線與拋物線相交于A,B兩點.
(1)用p表示線段AB的長;
(2)若,求這個拋物線的方程.
【答案】(1)4p(2)y2=4x.
【解析】試題分析:(1)先根據(jù)點斜式寫出直線方程,再與拋物線聯(lián)立方程組,利用韋達定理得兩根之和,最后根據(jù)拋物線定義求線段AB的長;(2)先根據(jù)向量數(shù)量積化簡,再根據(jù)點斜式設直線方程,與拋物線聯(lián)立方程組,利用韋達定理代入關系式,解出p
試題解析:解:(1)拋物線的焦點為F,過點F且傾斜角為
的直線方程是y=x-
.設A(x1,y1),B(x2,y2),聯(lián)立
得x2-3px+=0,∴x1+x2=3p,x1x2=
,∴AB=x1+x2+p=4p.
(2)由(1)知x1x2=,x1+x2=3p,
∴y1y2==x1x2-
(x1+x2)+
=
-
+
=-p2,
∴OA―→·OB―→=x1x2+y1y2=-p2=-
=-3,
解得p2=4,
∴p=2.
∴這個拋物線的方程為y2=4x.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的短軸長為
,右焦點為
,點
是橢圓
上異于左、右頂點
的一點.
(1)求橢圓的方程;
(2)若直線與直線
交于點
,線段
的中點為
,證明:點
關于直線
的對稱點在直線
上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設銳角△ABC的三內角A、B、C所對邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為( )
A.( ,
)
B.(1, )
C.( ,2)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)求的單調區(qū)間;
(2)設函數(shù),若存在
,對任意的
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,若E是AB的中點,P是△ABC(包括邊界)內任一點.則 的取值范圍是( )
A.[﹣6,6]
B.[﹣9,9]
C.[0,8]
D.[﹣2,6]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了,
,
,
四件獎品(每扇門里僅放一件).甲同學說:1號門里是
,3號門里是
;乙同學說:2號門里是
,3號門里是
;丙同學說:4號門里是
,2號門里是
;丁同學說:4號門里是
,3號門里是
.如果他們每人都猜對了一半,那么4號門里是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83,則x+y的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命題q:sin x+cos x>m.如果對于任意的x∈R,命題p是真命題且命題q為假命題,求m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com