已知橢圓上的點(diǎn)
到左右兩焦點(diǎn)
的距離之和為
,離心率為
.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線
交橢圓于
兩點(diǎn),若
軸上一點(diǎn)
滿足
,求直線
的斜率
的值.
(1);(2)
.
解析試題分析:(1)根據(jù)與離心率可求得a,b,c的值,從而就得到橢圓的方程;(2)設(shè)出直線的方程
,并與橢圓方程聯(lián)立消去y可得到關(guān)于x的一元二次方程,然后利用中點(diǎn)坐標(biāo)公式與分類討論的思想進(jìn)行解決.
試題解析:(1),∴
,
,∴
,∴
,
橢圓的標(biāo)準(zhǔn)方程為.
(2)已知,設(shè)直線的方程為
,
-,
聯(lián)立直線與橢圓的方程,化簡(jiǎn)得:
,
∴,
,
∴的中點(diǎn)坐標(biāo)為
.
①當(dāng)時(shí),
的中垂線方程為
,
∵,∴點(diǎn)
在
的中垂線上,將點(diǎn)
的坐標(biāo)代入直線方程得:
,即
,
解得或
.
②當(dāng)時(shí),
的中垂線方程為
,滿足題意,
∴斜率的取值為
.
考點(diǎn):1、橢圓的方程及幾何性質(zhì);2、直線與橢圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:
的左焦點(diǎn)為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)P(-2,0)的直線與橢圓E交于A、B兩點(diǎn),且滿足.
①若,求
的值;
②若M、N分別為橢圓E的左、右頂點(diǎn),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn)
,而且與橢圓相交于
兩點(diǎn),
為線段
的中點(diǎn).
(1)問(wèn):直線與
能否垂直?若能,
之間滿足什么關(guān)系;若不能,說(shuō)明理由;
(2)已知為
的中點(diǎn),且
點(diǎn)在橢圓上.若
,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知點(diǎn)和
,過(guò)點(diǎn)
的直線
與過(guò)點(diǎn)
的直線
相交于點(diǎn)
,設(shè)直線
的斜率為
,直線
的斜率為
,如果
,求點(diǎn)
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,
的外角平分線
與邊
的延長(zhǎng)線相交于點(diǎn)
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)、
分別是橢圓
的左、右焦點(diǎn),
為橢圓
上任意一點(diǎn),且
的最小值為
.
(I)求橢圓的方程;
(II)設(shè)直線(直線
、
不重合),若
、
均與橢圓
相切,試探究在
軸上是否存在定點(diǎn)
,使點(diǎn)
到
、
的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)
坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn)
,其左、右頂點(diǎn)分別是
、
,左、右焦點(diǎn)分別是
、
,
(異于
、
)是橢圓上的動(dòng)點(diǎn),連接
交直線
于
、
兩點(diǎn),若
成等比數(shù)列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過(guò)點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,
)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且
,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)
的橢圓
:
的右焦點(diǎn)為
,過(guò)焦點(diǎn)
且與
軸不重合的直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為
,試求直線
的方程;
(3)記,
兩點(diǎn)的縱坐標(biāo)分別為
,
,試問(wèn)
是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為
,且橢圓C經(jīng)過(guò)點(diǎn)
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過(guò)點(diǎn)
的弦,且
,求
內(nèi)切圓面積最大時(shí)實(shí)數(shù)
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com