日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)△ABC中,證明:sin2A=sin2B+sin2C-2sinBsinCcosA
          (2)計(jì)算:sin217°+cos247°+sin17°cos47°.
          分析:(1)根據(jù)余弦定理得到a2關(guān)于b、c和cosA的式子,結(jié)合正弦定理得a=2RsinA、b=2RsinB、c=2RsinC,將其代入前面的式子,約去4R2即可得到所求證的等式成立.
          (2)由誘導(dǎo)公式得cos47°=sin43°,從而原式=sin217°+sin243°+sin17°sin43°.構(gòu)造△ABC中:B=17°,C=43°,A=120°,利用(1)中的結(jié)論可得原式=sin2120°=
          3
          4
          解答:解:(1)△ABC中,根據(jù)余弦定理,得a2=b2+c2-2bccosA…(*)
          又∵
          a
          sinA
          =
          b
          sinB
          =
          c
          sinC
          =2R(R是外接圓半徑)
          ∴a=2RsinA,b=2RsinB,c=2RsinC
          代入(*)式,得4R2sin2A=4R2sin2B+4R2sin2C-2•2RsinB•2RsinCcosA
          兩邊約去4R2,得sin2A=sin2B+sin2C-2sinBsinCcosA,原等式成立.
          (2)∵cos47°=cos(90°-43°)=sin43°
          ∴sin217°+cos247°+sin17°cos47°=sin217°+sin243°+sin17°sin43°
          設(shè)△ABC中,B=17°,C=43°,則A=180°-(17°+43°)=120°
          由(1)得:sin2A=sin2B+sin2C-2sinBsinCcosA,
          即sin2120°=sin217°+sin243°-2sin17°sin43°cos120°=sin217°+sin243°+sin17°sin43°
          ∴sin217°+sin243°+sin17°sin43°=sin2120°=(
          3
          2
          2=
          3
          4

          即sin217°+cos247°+sin17°cos47°=
          3
          4
          點(diǎn)評(píng):本題利用正、余弦定理,證明了一個(gè)三角恒等式,并利用該式求值,著重考查了三角恒等變換和正余弦定理等知識(shí),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
          AM
          =
          c
          AN
          =
          d
          ,試用
          c
          、
          d
          表示
          AB
          AD

          (2)在△ABC中,若
          AB
          =
          a
          AC
          =
          b
          若P,Q,S為線段BC的四等分點(diǎn),試證:
          AP
          +
          AQ
          +
          AS
          =
          3
          2
          (
          a
          +
          b
          )
          ;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,s=
          1
          2
          (a+b+c)
          (1)證明
          1
          A
          +
          1
          B
          +
          1
          C
          9
          π
          ;
          (2)若s2=2ab,試證s<2a.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (08年安徽信息交流)在周長(zhǎng)為6的△ABC中,∠A、∠B   、∠C所對(duì)的邊分別為,若成等比數(shù)列;

          (1)求B的取值范圍;

          (2)求△ABC的面積S的最大值;

          (3) 當(dāng)△ABC的面積S最大時(shí),過(guò)△ABC的重心G作直線交邊AB于M,交邊AC與N,設(shè)∠AGM=試證:。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、

          PC的中點(diǎn).

          (1)求證:EF∥平面PAD;

          (2)求證:EF⊥CD;

          (3)若ÐPDA=45°求EF與平面ABCD所成的角的大。

          【解析】本試題主要考查了線面平行和線線垂直的運(yùn)用,以及線面角的求解的綜合運(yùn)用

          第一問(wèn)中,利用連AC,設(shè)AC中點(diǎn)為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點(diǎn) ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

          第二問(wèn)中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影       ∴ CD⊥EF.

          第三問(wèn)中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,F(xiàn)OPA

          ∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

          證:連AC,設(shè)AC中點(diǎn)為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點(diǎn)∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點(diǎn)  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

          ∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

          (2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影     ∴ CD⊥EF.

          (3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,F(xiàn)OPA

          ∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省泉州市季延中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,s=(a+b+c)
          (1)證明++;
          (2)若s2=2ab,試證s<2a.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案