【題目】已知為拋物線
:
的焦點(diǎn),過
的動直線交拋物線
于
,
兩點(diǎn).當(dāng)直線與
軸垂直時(shí),
.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線
相交于點(diǎn)
,拋物線
上存在點(diǎn)
使得直線
,
,
的斜率成等差數(shù)列,求點(diǎn)
的坐標(biāo).
【答案】(1) (2)
【解析】
(1)由題意可得,即可求出拋物線的方程,(2)設(shè)直線
的方程為
,聯(lián)立
消去
,得
,根據(jù)韋達(dá)定理結(jié)合直線
,
,
的斜率成等差數(shù)列,即可求出點(diǎn)
的坐標(biāo).
解:(1)因?yàn)?/span>,在拋物線方程
中,令
,可得
.
于是當(dāng)直線與軸垂直時(shí),
,解得
.
所以拋物線的方程為.
(2)因?yàn)閽佄锞的準(zhǔn)線方程為
,所以
.
設(shè)直線的方程為
,
聯(lián)立消去
,得
.
設(shè),
,則
,
.
若點(diǎn)滿足條件,則
,
即,
因?yàn)辄c(diǎn),
,
均在拋物線上,所以
,
,
.
代入化簡可得,
將,
代入,解得
.
將代入拋物線方程,可得
.
于是點(diǎn)為滿足題意的點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義變換將平面內(nèi)的點(diǎn)
變換到平面內(nèi)的點(diǎn)
;若曲線
經(jīng)變換
后得到曲線
,曲線
經(jīng)變換
后得到曲線
,…,依次類推,曲線
經(jīng)變換
后得到曲線
,當(dāng)
時(shí),記曲線
與
、
軸正半軸的交點(diǎn)為
和
,某同學(xué)研究后認(rèn)為曲線
具有如下性質(zhì):①對任意的
,曲線
都關(guān)于原點(diǎn)對稱;②對任意的
,曲線
恒過點(diǎn)
;③對任意的
,曲線
均在矩形
(含邊界)的內(nèi)部,其中
的坐標(biāo)為
;④記矩形
的面積為
,則
;其中所有正確結(jié)論的序號是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過點(diǎn)
,并且與圓
:
相外切,設(shè)動圓的圓心
的軌跡為
.
(1)求曲線的方程;
(2)過動點(diǎn)作直線與曲線
交于
兩點(diǎn),當(dāng)
為
的中點(diǎn)時(shí),求
的值;
(3)過點(diǎn)的直線
與曲線
交于
兩點(diǎn),設(shè)直線
:
,點(diǎn)
,直線
交
于點(diǎn)
,求證:直線
經(jīng)過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當(dāng)天買當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計(jì)了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時(shí)間
(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與
的關(guān)系,請計(jì)算相關(guān)系數(shù)
并加以說明(計(jì)算結(jié)果精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式
,參考數(shù)據(jù)
.
(2)建立關(guān)于
的回歸方程,并預(yù)測第六年該公司的網(wǎng)購人數(shù)(計(jì)算結(jié)果精確到整數(shù)).
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且拋物線
的焦點(diǎn)恰好是橢圓
的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作直線
與橢圓
交于
,
兩點(diǎn),點(diǎn)
滿足
(
為坐標(biāo)原點(diǎn)),求四邊形
面積的最大值,并求此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,
.
(1)當(dāng)時(shí),試比較
與
的大小關(guān)系;
(2)猜想與
的大小關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機(jī)變量
的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com