日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設函數(shù)f(x)是定義在R上周期為2的可導函數(shù),若f(2)=2,且
          lim
          x→0
          f(x+2)-2
          2x
          =-2
          ,則曲線y=f(x)在點(0,f(0)處切線方程是(  )
          分析:利用導數(shù)的定義先求切線的斜率,再由直線方程的點斜式寫出切線方程.
          解答:解:∵f(2)=2
          由題意,
          lim
          x→0
          f(x+2)-2
          2x
          =
          1
          2
          lim
          x→0
          f(x+2)-f(2)
          x
          =
          1
          2
          f(2)
          =-2
          ∴f′(2)=-4
          根據導數(shù)的幾何意義可知函數(shù)在x=2處得切線斜率為-4,
          ∴函數(shù)在(2,2)處的切線方程為y-2=-4(x-2)即y=-4x+10
          ∵函數(shù)f(x)是定義在R上周期為2
          ∴曲線y=f(x)在點(2,f(2))處的切線向左平移2個單位即可得到(0,f(0)處切線,方程為y=-4(x+2)+10即y=-4x+2
          故選B
          點評:本題考查導數(shù)的定義及導數(shù)的幾何意義的應用,會利用導數(shù)求曲線上過某點切線方程,屬于基礎題
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
          1
          3
          )=1

          (1)求f(
          1
          9
          )
          ;
          (2)若f(x)+f(2-x)<2,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當x∈[-1,0)時,f(x)=x3-ax(a∈R).
          (1)當x∈(0,1]時,求f(x)的解析式;
          (2)若a>3,試判斷f(x)在(0,1]上的單調性,并證明你的結論;
          (3)是否存在a,使得當x∈(0,1]時,f(x)有最大值1?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
          0
          0

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)是定義在R上的偶函數(shù).若當x≥0時,f(x)=
          |1-
          1
          x
          0
          x>0;,
          x=0.

          (1)求f(x)在(-∞,0)上的解析式.
          (2)請你作出函數(shù)f(x)的大致圖象.
          (3)當0<a<b時,若f(a)=f(b),求ab的取值范圍.
          (4)若關于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解,求b,c滿足的條件.

          查看答案和解析>>

          同步練習冊答案