日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線f(x)=xn+1(n∈N*)與直線x=1交于點(diǎn)P,若設(shè)曲線y=f(x)在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2012x1+log2012x2+…+log2012x2011的值為
          -1
          -1
          分析:由f′(x)=(n+1)xn,知k=f′(x)=n+1,故點(diǎn)P(1,1)處的切線方程為:y-1=(n+1)(x-1),令y=0,得xn=
          n
          n+1
          ,由此能求出log2012x1+log2012x2+…+log2012x2011的值
          解答:解:f′(x)=(n+1)xn
          k=f′(x)=n+1,
          點(diǎn)P(1,1)處的切線方程為:y-1=(n+1)(x-1),
          令y=0得,x=1-
          1
          n+1
          =
          n
          n+1
          ,
          xn=
          n
          n+1

          ∴x1×x2×…×x2011=
          1
          2
          ×
          2
          3
          ×
          3
          4
          ×…×
          2010
          2011
          ×
          2011
          2012
          =
          1
          2012
          ,
          則log2012x1+log2012x2+…+log2012x2011
          =log2012(x1×x2×…×x2011
          =log2012
          1
          2012
          =-1.
          故答案為-1
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求曲線上某點(diǎn)的切線方程的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的靈活運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線f(x)=
          x-1
          在點(diǎn)A(2,1)處的切線為直線l
          (1)求切線l的方程;
          (2)求切線l,x軸及曲線所圍成的封閉圖形的面積S.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x3+ax2+bx+5,若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為3,且當(dāng)x=
          23
          時(shí),y=f(x)有極值.
          (1)求函數(shù)f(x)的解析式;
          (2)求函數(shù)f(x)在[-4,1]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線f(x)=x3+bx2+cx在點(diǎn)A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個(gè)極值點(diǎn)為x=0.
          (Ⅰ)求實(shí)數(shù)b,c的值;
          (Ⅱ)若函數(shù)y=f(x),x∈[-
          12
          ,3]
          的圖象與直線y=m恰有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案