日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點(diǎn)P(1,
          3
          2
          )

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)過F1的直線l與橢圓C交于A、B兩點(diǎn),問在橢圓C上是否存在一點(diǎn)M,使四邊形AMBF2為平行四邊形,若存在,求出直線l的方程,若不存在,請說明理由.
          (Ⅰ)∵橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點(diǎn)P(1,
          3
          2
          )

          c=1
          1
          a2
          +
          9
          4b2
          =1
          a2=b2+c2
          ,解得a=2,b=
          3
          ,
          ∴橢圓C的方程為
          x2
          4
          +
          y2
          3
          =1

          (Ⅱ)假設(shè)存在符合條件的點(diǎn)M(x0,y0),
          設(shè)直線l的方程為x=my-1,
          x=my-1
          3x2+4y2=12
          得:(3m2+4)y2-6my-9=0,
          △=36m2+36(3m2+4)>0,
          y1+y2=
          6m
          3m2+4

          ∴AB的中點(diǎn)為(-
          4
          3m2+4
          ,
          3m
          3m2+4
          )

          ∵四邊形AMBF2為平行四邊形,∴AB與MF2的中點(diǎn)重合,即:
          x0+1
          2
          =-
          4
          3m2+4
          y0
          2
          =
          3m
          3m2+4

          M(-
          3m2+12
          3m2+4
          ,
          6m
          3m2+4
          )
          ,
          把點(diǎn)M坐標(biāo)代入橢圓C的方程得:27m4-24m2-80=0
          解得m2=
          20
          9
          ,
          ∴存在符合條件的直線l的方程為:y=±
          3
          5
          10
          (x+1)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線C:x2=2py過點(diǎn)P(1,
          1
          2
          )
          ,直線l交C于A,B兩點(diǎn),過點(diǎn)P且平行于y軸的直線分別與直線l和x軸相交于點(diǎn)M,N.
          (1)求p的值;
          (2)是否存在定點(diǎn)Q,當(dāng)直線l過點(diǎn)Q時,△PAM與△PBN的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線C:y2=4x的準(zhǔn)線與x軸交于M點(diǎn),過M點(diǎn)斜率為k的直線l與拋物線C交于A、B兩點(diǎn)(A在M、B之間).
          (1)F為拋物線C的焦點(diǎn),若|AM|=
          5
          4
          |AF|,求k的值;
          (2)如果拋物線C上總存在點(diǎn)Q,使得QA⊥QB,試求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點(diǎn)M(-1,0),N(1,0),動點(diǎn)P(x,y)滿足:|PM|•|PN|=
          4
          1+cos∠MPN
          ,
          (1)求P的軌跡C的方程;
          (2)是否存在過點(diǎn)N(1,0)的直線l與曲線C相交于A、B兩點(diǎn),并且曲線C存在點(diǎn)Q,使四邊形OAQB為平行四邊形?若存在,求出平行四邊形OAQB的面積;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,橢圓C上的點(diǎn)到左焦點(diǎn)F距離的最小值與最大值之積為1.
          (1)求橢圓C的方程;
          (2)直線l過橢圓C內(nèi)一點(diǎn)M(m,0),與橢圓C交于P、Q兩點(diǎn).對給定的m值,若存在直線l及直線母x=-2上的點(diǎn)N,使得△PNQ的垂心恰為點(diǎn)F,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1.
          (Ⅰ)若過點(diǎn)C1(-1,0)的直線l被圓C2截得的弦長為
          6
          5
          ,求直線l的方程;
          (Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點(diǎn)P分別作圓C1的兩條切線PE,PF,切點(diǎn)為E,F(xiàn),求
          C1E
          C1F
          的取值范圍;
          (Ⅲ)若動圓C同時平分圓C1的周長、圓C2的周長,則動圓C是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知雙曲線的中心在原點(diǎn),左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為
          2
          ,且過點(diǎn)(4,-
          10
          )
          ,
          (1)求此雙曲線的標(biāo)準(zhǔn)方程;
          (2)若直線系kx-y-3k+m=0(其中k為參數(shù))所過的定點(diǎn)M恰在雙曲線上,求證:F1M⊥F2M.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          過點(diǎn)(
          3
          ,
          2
          2
          )
          ,它的離心率為
          6
          2
          ,P、Q分別在雙曲線的兩條漸近線上,M是線段PQ中點(diǎn),|PQ|=2
          2

          (Ⅰ)求雙曲線及其漸近線方程;
          (Ⅱ)求點(diǎn)M的軌跡C的方程;
          (Ⅲ)過C左焦點(diǎn)F1的直線l與C相交于點(diǎn)A、B,F(xiàn)2為C的右焦點(diǎn),求△ABF2面積最大時
          F2A
          F2B
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,設(shè)P是圓x2+y2=2上的動點(diǎn),PD⊥x軸,垂足為D,M為線段PD上一點(diǎn),且|PD|=
          2
          |MD|,點(diǎn)A、F1的坐標(biāo)分別為(0,
          2
          ),(-1,0).
          (1)求點(diǎn)M的軌跡方程;
          (2)求|MA|+|MF1|的最大值,并求此時點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案