日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=1-
          2x

          (Ⅰ)若g(x)=f(x)-a為奇函數(shù),求a的值;
          (Ⅱ)試判斷f(x)在(0,+∞)內(nèi)的單調(diào)性,并用定義證明.
          分析:(I)根據(jù)f(x)表達(dá)式,得g(x)=1-a-
          2
          x
          ,再根據(jù)奇函數(shù)的定義采用比較系數(shù)法即可求出實(shí)數(shù)a的值.
          (II)設(shè)0<x1<x2,將f(x1)與f(x2)作差、因式分解,得f(x1)<f(x2),結(jié)合函數(shù)奇偶性的定義得到函數(shù)f(x)在(0,+∞)內(nèi)是單調(diào)增函數(shù).
          解答:解:(Ⅰ)∵f(x)=1-
          2
          x

          ∴g(x)=f(x)-a=1-a-
          2
          x
          ,…(2分)
          ∵g(x)是奇函數(shù),
          ∴g(-x)=-g(x),即1-a-
          2
          (-x)
          =-(1-a-
          2
          x
          )
          ,
          解之得a=1.…(5分)
          (Ⅱ)設(shè)0<x1<x2,則
          f(x1)-f(x2)=1-
          2
          x1
          -(1-
          2
          x2
          )
          =
          2(x1-x2)
          x1x2
          .(9分)
          ∵0<x1<x2,
          ∴x1-x2<0,x1x2>0,從而
          2(x1-x2)
          x1x2
          <0
          ,(11分)
          即f(x1)<f(x2).
          所以函數(shù)f(x)在(0,+∞)內(nèi)是單調(diào)增函數(shù).(12分)
          點(diǎn)評(píng):本題給出含有分式的基本初等函數(shù),討論函數(shù)的單調(diào)性與奇偶性質(zhì).著重考查了函數(shù)的奇偶性的定義和用定義法證明單調(diào)性等知識(shí),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時(shí)滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
          ②?x∈(8,+∞),f(x)>0.
          則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)x≥1時(shí),不等式f(x)≥
          k
          x+1
          恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案