日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)__________都有導(dǎo)數(shù),就說f(x)在開區(qū)間(a,b)內(nèi)可導(dǎo).這時(shí)對(duì)于每一個(gè)x∈(a,b),都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù)f′(x),從而構(gòu)成了一個(gè)新的函數(shù)f′(x) ,我們就把這個(gè)函數(shù)f′(x)叫做f(x)在開區(qū)間(a,b)上的導(dǎo)函數(shù),簡(jiǎn)稱導(dǎo)數(shù),記作f′(x)或y′,即?

          y′=f′(x)=_____________.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如果函數(shù)f(x)同時(shí)滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱為中值.有下列命題:
          ①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點(diǎn)A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
          ②函數(shù)y=
          2-
          x2
          2
          在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=
          2
          ,f′(ξ)=-
          2
          2
          ;
          ③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
          ④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對(duì)任意的x1、x2∈[a,b],x1<x2,有
          1
          2
          [f(x1)+f(x2)]<f(
          x1+x2
          2
          )恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
          x1+x2
          2

          其中你認(rèn)為正確的所有命題序號(hào)是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=-
          1
          3
          x3+bx2-3a2x(a≠0)
          在x=a處取得極值.
          (Ⅰ)求
          b
          a
          ;
          (Ⅱ)設(shè)函數(shù)g(x)=2x3-3af′(x)-6a3,如果g(x)在開區(qū)間(0,1)上存在極小值,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=-
          1
          3
          x3+bx2-3a2x(a≠0)
          在x=a處取得極值.
          (Ⅰ)求
          b
          a
          ;
          (Ⅱ)設(shè)函數(shù)g(x)=2x3-3af′(x)-6a3,如果g(x)在開區(qū)間(0,1)上存在極小值,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年四川省成都市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          如果函數(shù)f(x)同時(shí)滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱為中值.有下列命題:
          ①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點(diǎn)A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
          ②函數(shù)y=在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=,f′(ξ)=-;
          ③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
          ④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對(duì)任意的x1、x2∈[a,b],x1<x2,有[f(x1)+f(x2)]<f()恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
          其中你認(rèn)為正確的所有命題序號(hào)是    

          查看答案和解析>>

          同步練習(xí)冊(cè)答案