日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)
          (1)當m=1時,求證:對x∈[0,+∞)時,f(x)≥0;
          (2)當m≤1時,討論函數(shù)f(x)零點的個數(shù).

          【答案】
          (1)證明:當m=1時, ,則f'(x)=ex﹣x﹣1,

          令g(x)=ex﹣x﹣1,則g'(x)=ex﹣1,當x≥0時,ex﹣1≥0,即g'(x)≥0,

          所以函數(shù)f'(x)=ex﹣x﹣1在[0,+∞)上為增函數(shù),

          即當x≥0時,f'(x)≥f'(0),所以當x≥0時,f'(x)≥0恒成立,

          所以函數(shù) ,在[0,+∞)上為增函數(shù),又因為f(0)=0,

          所以當m=1時,對x∈[0,+∞),f(x)≥0恒成立


          (2)解:由(1)知,當x≤0時,ex﹣1≤0,所以g'(x)≤0,所以函數(shù)f'(x)=ex﹣x﹣1的減區(qū)間為(﹣∞,0],增區(qū)間為[0,+∞).所以f'(x)min=f'(0)=0,所以對x∈R,f'(x)≥0,即ex≥x+1.

          ①當x≥﹣1時,x+1≥0,又m≤1,∴m(x+1)≤x+1,∴ex﹣m(x+1)≥ex﹣(x+1)≥0,即f'(x)≥0,所以當x≥﹣1時,函數(shù)f(x)為增函數(shù),又f(0)=0,所以當x>0時,f(x)>0,當﹣1≤x<0時,f(x)<0,所以函數(shù)f(x)在區(qū)間[﹣1,+∞)上有且僅有一個零點,且為0.

          ②當x<﹣1時,(ⅰ)當0≤m≤1時,﹣m(x+1)≥0,ex>0,所以f'(x)=ex﹣m(x+1)>0,

          所以函數(shù)f(x)在(﹣∞,﹣1)上遞增,所以f(x)<f(﹣1),且 ,

          故0≤m≤1時,函數(shù)y=f(x)在區(qū)間(﹣∞,﹣1)上無零點.

          (ⅱ)當m<0時,f'(x)=ex﹣mx﹣m,令h(x)=ex﹣mx﹣m,則h'(x)=ex﹣m>0,

          所以函數(shù)f'(x)=ex﹣mx﹣m在(﹣∞,﹣1)上單調(diào)遞增,f'(﹣1)=e1>0,

          時, ,又曲線f'(x)在區(qū)間 上不間斷,

          所以x0 ,使f'(x0)=0,

          故當x∈(x0,﹣1)時,0=f'(x0)<f'(x)<f'(﹣1)=e1,

          當x∈(﹣∞,x0)時,f'(x)<f'(x0)=0,

          所以函數(shù) 的減區(qū)間為(﹣∞,x0),增區(qū)間為(x0,﹣1),

          ,所以對x∈[x0,﹣1),f(x)<0,

          又當 時, ,∴f(x)>0,

          又f(x0)<0,曲線 在區(qū)間 上不間斷.

          所以x1∈(﹣∞,x0),且唯一實數(shù)x1,使得f(x1)=0,

          綜上,當0≤m≤1時,函數(shù)y=f(x)有且僅有一個零點;當m<0時,函數(shù)y=f(x)有個兩零點


          【解析】(1)當m=1時, ,則f'(x)=ex﹣x﹣1,令g(x)=ex﹣x﹣1,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值,可得函數(shù)f'(x)=ex﹣x﹣1在[0,+∞)上為增函數(shù),即當x≥0時,f'(x)≥f'(0)=0,可得函數(shù)f(x)在(0,+∞)上為增函數(shù),即可證明.(2)由(1)知,當x≤0時,ex﹣1≤0,所以g'(x)≤0,可得ex≥x+1.①當x≥﹣1時,x+1≥0,又m≤1,m(x+1)≤x+1,可得ex﹣m(x+1)≥0,即f'(x)≥0,可得:函數(shù)f(x)在區(qū)間[﹣1,+∞)上有且僅有一個零點,且為0.②當x<﹣1時,(ⅰ)當0≤m≤1時,﹣m(x+1)≥0,ex>0,可得f'(x)=ex﹣m(x+1)>0,函數(shù)f(x)在(﹣∞,﹣1)上遞增,函數(shù)y=f(x)在區(qū)間(﹣∞,﹣1)上無零點. (ⅱ)當m<0時,f'(x)=ex﹣mx﹣m,令h(x)=ex﹣mx﹣m,則h'(x)>0,函數(shù)f'(x)=ex﹣mx﹣m在(﹣∞,﹣1)上單調(diào)遞增,f'(﹣1)=e1>0,可得函數(shù)存在兩個零點.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在體積為12π的圓柱中,AB,CD分別是上、下底面兩條不平行的直徑,則三棱錐A﹣BCD的體積最大值等于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機構(gòu)隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.

          1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;

          (2)若從這10名購物者中隨機抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機抽查50人,并將調(diào)查情況進行整理后制成如表:

          年齡(歲)

          [15,25)

          [25,35)

          [35,45)

          [45,55)

          [55,60)

          頻數(shù)

          10

          10

          10

          10

          10

          贊成人數(shù)

          3

          5

          6

          7

          9


          (1)世界聯(lián)合國衛(wèi)生組織規(guī)定:[15,45)歲為青年,(45,60)為中年,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫以下2×2列聯(lián)表:

          青年人

          中年人

          合計

          不贊成

          贊成

          合計


          (2)判斷能否在犯錯誤的概率不超過0.05的前提下,認為贊成“車柄限行”與年齡有關(guān)? 附: ,其中n=a+b+c+d
          獨立檢驗臨界值表:

          P(K2≥k)

          0.100

          0.050

          0.025

          0.010

          k0

          2.706

          3.841

          5.024

          6.635


          (3)若從年齡[15,25),[25,35)的被調(diào)查中各隨機選取1人進行調(diào)查,設(shè)選中的兩人中持不贊成“車輛限行”態(tài)度的人員為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】參與舒城中學(xué)數(shù)學(xué)選修課的同學(xué)對某公司的一種產(chǎn)品銷量與價格進行了統(tǒng)計,得到如下數(shù)據(jù)和散點圖.

          定價x(元/千克)

          10

          20

          30

          40

          50

          60

          年銷量y(千克)

          1150

          643

          424

          262

          165

          86

          z=2 ln y

          14.1

          12.9

          12.1

          11.1

          10.2

          8.9

          參考數(shù)據(jù):

          ,

          .

          (1)根據(jù)散點圖判斷yx,zx哪一對具有較強的線性相關(guān)性(給出判斷即可,不必說明理由)?

          (2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

          (3)當定價為150/千克時,試估計年銷量.

          :對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線x+的斜率和截距的最

          小二乘估計分別為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)= ,稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個命題: ①f(f(x))=1;
          ②函數(shù)f(x)是偶函數(shù);
          ③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
          ④存在三個點A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
          其中真命題的個數(shù)是(
          A.4
          B.3
          C.2
          D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
          (1)解不等式f(x)<g(x);
          (2)若2f(x)+g(x)>ax對任意的實數(shù)x恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣1|﹣|x+2|. (Ⅰ)求不等式﹣2<f(x)<0的解集A;
          (Ⅱ)若m,n∈A,證明:|1﹣4mn|>2|m﹣n|.

          查看答案和解析>>

          同步練習(xí)冊答案