日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
          (Ⅰ)求橢圓C的方程和離心率e;
          (Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對稱點(diǎn),動(dòng)點(diǎn)M滿足. 問是否存在一個(gè)定點(diǎn)T,使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.
          (Ⅰ);(Ⅱ)存在一個(gè)定點(diǎn)且定值為.

          試題分析:(Ⅰ)依題意由線段F1F2為直徑的圓與直線相切,根據(jù)點(diǎn)到直線的距離公式得,可得c值,再由△AF1F2為正三角形,得a、b、c間關(guān)系,求出a、b的值,即得橢圓方程及離心率;(Ⅱ)假設(shè)存在一個(gè)定點(diǎn)T符合題意,先求出點(diǎn)關(guān)于直線的對稱點(diǎn),由題意,可知?jiǎng)狱c(diǎn)M的軌跡,從而得解.
          試題解析:解:(Ⅰ)設(shè)焦點(diǎn)為,
          以線段為直徑的圓與直線相切,,即c=2,    1分
          為正三角形,,  4分
          橢圓C的方程為,離心率為.        6分
          (Ⅱ)假設(shè)存在一個(gè)定點(diǎn)T符合題意,設(shè)動(dòng)點(diǎn),由點(diǎn)
          點(diǎn)關(guān)于直線的對稱點(diǎn),                     7分

          兩邊平方整理得,                      10分
          即動(dòng)點(diǎn)M的軌跡是以點(diǎn)為圓心,長為半徑的圓,
          存在一個(gè)定點(diǎn)且定值為.                         12分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的對稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為,離心率.

          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)軸上的動(dòng)點(diǎn),過點(diǎn)作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).
          (I)求橢圓的方程;
          (II)直線與橢圓交于,兩點(diǎn),且線段的垂直平分線經(jīng)過點(diǎn),求為原點(diǎn))面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
          (1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,則
          是否為定值?若是,求出其值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
          (Ⅰ)求C的方程;
          (Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時(shí),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓的長軸在軸上,且焦距為4,則等于(  )
          A.4B.5C.7D.8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點(diǎn)P、Q且.
          (1)求點(diǎn)T的橫坐標(biāo);
          (2)若以F1,F2為焦點(diǎn)的橢圓C過點(diǎn).
          ①求橢圓C的標(biāo)準(zhǔn)方程;
          ②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

          (1)求橢圓C的方程;
          (2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經(jīng)過點(diǎn);橢圓的一個(gè)焦點(diǎn)到長軸兩端點(diǎn)的距離分別為10和4.

          查看答案和解析>>

          同步練習(xí)冊答案