日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)f(x)=|x﹣a|,a∈R
          (Ⅰ)當(dāng)a=5,解不等式f(x)≤3;
          (Ⅱ)當(dāng)a=1時(shí),若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求實(shí)數(shù)m的取值范圍.

          【答案】解:(I)a=5時(shí)原不等式等價(jià)于|x﹣5|≤3即﹣3≤x﹣5≤3,2≤x≤8,
          ∴解集為{x|2≤x≤8};
          (II)當(dāng)a=1時(shí),f(x)=|x﹣1|,
          ,
          由圖象知:當(dāng) 時(shí),g(x)取得最小值 ,由題意知: ,
          ∴實(shí)數(shù)m的取值范圍為

          【解析】(Ⅰ)將a=5代入解析式,然后解絕對值不等式,根據(jù)絕對值不等式的解法解之即可;(Ⅱ)先利用根據(jù)絕對值不等式的解法去絕對值,然后利用圖象研究函數(shù)的最小值,使得1﹣2m大于等于不等式左側(cè)的最小值即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l:x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的一條對稱軸,過點(diǎn)A(﹣4,a)作圓C的兩條切線,切點(diǎn)分別為B、D,則直線BD的方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ= ,曲線C的參數(shù)方程為
          (1)寫出直線l與曲線C的直角坐標(biāo)方程;
          (2)過點(diǎn)M平行于直線l1的直線與曲線C交于A、B兩點(diǎn),若|MA||MB|= ,求點(diǎn)M軌跡的直角坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】執(zhí)行如圖的算法程序框圖,輸出的結(jié)果是(
          A.211﹣2
          B.211﹣1
          C.210﹣2
          D.210﹣1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,隨機(jī)對使用微信的60人進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)統(tǒng)計(jì)表,每天使用微信時(shí)間在兩小時(shí)以上的人被定義為“微信達(dá)人”,不超過2兩小時(shí)的人被定義為“非微信達(dá)人”,己知“非微信達(dá)人”與“微信達(dá)人”人數(shù)比恰為3:2.
          (1)確定x,y,p,q的值,并補(bǔ)全須率分布直方圖;
          (2)為進(jìn)一步了解使用微信對自己的日不工作和生活是否有影響,從“微信達(dá)人”和“非微信達(dá)人”60人中用分層抽樣的方法確定10人,若需從這10人中隨積選取3人進(jìn)行問卷調(diào)查,設(shè)選取的3人中“微信達(dá)人”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          使用微信時(shí)間(單位:小時(shí))

          頻數(shù)

          頻率

          (0,0.5]

          3

          0.05

          (0.5,1]

          x

          p

          (1,1.5]

          9

          0.15

          (1.5,2]

          15

          0.25

          (2,2.5]

          18

          0.30

          (2.5,3]

          y

          q

          合計(jì)

          60

          1.00

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 且6Sn=3n+1+a(n∈N+
          (1)求a的值及數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=(1﹣an)log3(an2an+1),求 的前n項(xiàng)和為Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】斐波拉契數(shù)列0,1,1,2,3,5,8…是數(shù)學(xué)史上一個(gè)著名的數(shù)列,定義如下:F(0)=0,F(xiàn)(1)=1,F(xiàn)(n)=F(n﹣1)+F(n﹣2)(n≥2,n∈N).某同學(xué)設(shè)計(jì)了一個(gè)求解斐波拉契數(shù)列前15項(xiàng)和的程序框圖,那么在空白矩形和判斷框內(nèi)應(yīng)分別填入的詞句是( )

          A.c=a,i≤14
          B.b=c,i≤14
          C.c=a,i≤15
          D.b=c,i≤15

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)P(2, ),離心率e= ,直線l的漸近線為x=4.
          (1)求橢圓C的方程;
          (2)經(jīng)過橢圓右焦點(diǎn)D的任一直線(不經(jīng)過點(diǎn)P)與橢圓交于兩點(diǎn)A,B,設(shè)直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù) 圖象上的點(diǎn) 向右平移m(m>0)個(gè)單位長度得到點(diǎn)P',若P'位于函數(shù)y=cos2x的圖象上,則(
          A. ,m的最小值為
          B. ,m的最小值為
          C. ,m的最小值為
          D. ,m的最小值為

          查看答案和解析>>

          同步練習(xí)冊答案