【題目】已知點(diǎn),拋物線
:
的焦點(diǎn)為
,射線
與拋物線
相交于點(diǎn)
,與其準(zhǔn)線相交于點(diǎn)
,則
( )
A. B.
C.
D.
【答案】C
【解析】
求出拋物線C的焦點(diǎn)F的坐標(biāo),從而得到AF的斜率k=-2.過(guò)M作MP⊥l于P,根據(jù)拋物線物定義得|FM|=|PM|.Rt△MPN中,根據(jù)tan∠NMP=﹣k=2,從而得到|PN|=2|PM|,進(jìn)而算出|MN||PM|,由此即可得到|FM|:|MN|的值.
∵拋物線C:y2=4x的焦點(diǎn)為F(1,0),點(diǎn)A坐標(biāo)為(0,2),
∴拋物線的準(zhǔn)線方程為l:x=﹣1,直線AF的斜率為k=﹣2,
過(guò)M作MP⊥l于P,根據(jù)拋物線物定義得|FM|=|PM|,
∵Rt△MPN中,tan∠NMP=﹣k=2,
∴2,可得|PN|=2|PM|,
得|MN||PM|,
因此可得|FM|:|MN|=|PM|:|MN|=1:.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線的極坐標(biāo)方程為
,以極點(diǎn)
為直角坐標(biāo)原點(diǎn),以極軸為
軸的正半軸建立平面直角坐標(biāo)系
,將曲線
向左平移
個(gè)單位長(zhǎng)度,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
,縱坐標(biāo)保持不變,得到曲線
(1)求曲線的直角坐標(biāo)方程;
(2)已知直線的參數(shù)方程為
,(
為參數(shù)),點(diǎn)
為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)已知c>0,關(guān)于x的不等式:x+|x-2c|≥2的解集為R.求實(shí)數(shù)c的取值范圍;
(Ⅱ)若c的最小值為m,又p、q、r是正實(shí)數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),拋物線
:
的焦點(diǎn)為
,射線
與拋物線
相交于點(diǎn)
,與其準(zhǔn)線相交于點(diǎn)
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次數(shù)學(xué)考試后,對(duì)高三文理科學(xué)生進(jìn)行抽樣調(diào)查,調(diào)查其對(duì)本次考試的結(jié)果滿意或不滿意,現(xiàn)隨機(jī)抽取名學(xué)生的數(shù)據(jù)如下表所示:
滿意 | 不滿意 | 總計(jì) | |
文科 | 22 | 18 | 40 |
理科 | 48 | 12 | 60 |
總計(jì) | 70 | 30 | 100 |
(1)根據(jù)數(shù)據(jù),有多大的把握認(rèn)為對(duì)考試的結(jié)果滿意與科別有關(guān);
(2)用分層抽樣方法在感覺(jué)不滿意的學(xué)生中隨機(jī)抽取名,理科生應(yīng)抽取幾人;
(3)在(2)抽取的名學(xué)生中任取2名,求文科生人數(shù)的期望.(
其中
)
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓:
的左焦點(diǎn)為
且離心率為
,
為橢圓
上任意一點(diǎn),
的取值范圍為
,
.
(1)求橢圓的方程;
(2)如圖,設(shè)圓是圓心在橢圓
上且半徑為
的動(dòng)圓,過(guò)原點(diǎn)
作圓
的兩條切線,分別交橢圓于
,
兩點(diǎn).是否存在
使得直線
與直線
的斜率之積為定值?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照
,
,
,
,
,
,
分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)
估計(jì)為
分
D. 總體分布在的頻數(shù)一定與總體分布在
的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距與短軸長(zhǎng)相等,長(zhǎng)軸長(zhǎng)為
,設(shè)過(guò)右焦點(diǎn)F傾斜角為
的直線交橢圓M于A、B兩點(diǎn).
(1)求橢圓M的方程;
(2)求證:
(3)設(shè)過(guò)右焦點(diǎn)F且與直線AB垂直的直線交橢圓M于C、D,求四邊形ABCD面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com