日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)求證:時(shí),.

          【答案】1的單調(diào)增區(qū)間為,無(wú)減區(qū)間(2)詳見(jiàn)解析.

          【解析】

          1)求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x1時(shí)的導(dǎo)數(shù),再求得f1),然后利用直線方程的點(diǎn)斜式得答案;(2)構(gòu)造新函數(shù)hx)=exx2﹣(e2x1,證明ex﹣(e2x1x2;令新函數(shù)φx)=lnxx,證明xlnx+1)≤x2,從而證明結(jié)論成立.

          1)由,得.

          因?yàn)榍在點(diǎn)處的切線與直線垂直,

          所以,所以,即,.

          ,則.所以時(shí),單調(diào)遞減;

          時(shí),,單調(diào)遞增.所以,所以,單調(diào)遞增.

          的單調(diào)增區(qū)間為,無(wú)減區(qū)間

          2)由(1)知,,所以處的切線為,

          .

          ,則,

          ,,

          時(shí),,單調(diào)遞減;

          時(shí),,單調(diào)遞增.

          因?yàn)?/span>,所以,因?yàn)?/span>,所以存在,使時(shí),,單調(diào)遞增;

          時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.

          ,所以時(shí),,即,

          所以.

          ,則.所以時(shí),,單調(diào)遞增;

          時(shí),,單調(diào)遞減,所以,即

          因?yàn)?/span>,所以,所以時(shí),,

          時(shí),.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為.

          1)求橢圓E的方程;

          2)若直線與橢圓E相交于AB兩點(diǎn),設(shè)P為橢圓E上一動(dòng)點(diǎn),且滿足O為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )

          A. B. C. D. 無(wú)法確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,,平面,點(diǎn)在棱上.

          (Ⅰ)求證:平面平面;

          (Ⅱ)若直線平面,求此時(shí)三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)(其中 ,為自然對(duì)數(shù)的底數(shù))

          (Ⅰ)若函數(shù)無(wú)極值,求實(shí)數(shù)的取值范圍;

          (Ⅱ)當(dāng)時(shí),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進(jìn)貨量也在范圍內(nèi)取值(每天進(jìn)1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1盒禮盒虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30.設(shè)該禮盒每天的需求量為盒,進(jìn)貨量為盒,商店的日利潤(rùn)為.

          1)求商店的日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;

          2)試計(jì)算進(jìn)貨量為多少時(shí),商店日利潤(rùn)的期望值最大?并求出日利潤(rùn)期望值的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐PABCD-中,AB//CD,AB=1,CD=3,AP=2,DP=2,PAD=60°,AB⊥平面PAD,點(diǎn)M在棱PC上.

          (Ⅰ)求證:平面PAB⊥平面PCD;

          (Ⅱ)若直線PA// 平面MBD,求此時(shí)直線BP與平面MBD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          1)求不等式的解集

          2)若,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),點(diǎn)在準(zhǔn)線上的投影為,點(diǎn)是拋物線上一點(diǎn),且滿足.

          1)若點(diǎn)坐標(biāo)是,求線段中點(diǎn)的坐標(biāo);

          2)求面積的最小值及此時(shí)直線的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案