日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率,且點(diǎn)P(-2,0)在橢圓C上.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)已知A、B為橢圓C上的動點(diǎn),當(dāng)PA⊥PB時,求證:直線AB恒過一個定點(diǎn).并求出該定點(diǎn)的坐標(biāo).
          【答案】分析:(1)設(shè)橢圓的方程為:,由題意得,a=2,再由b2=a2-c2可求得c,b;
          (2)分情況討論:①當(dāng)直線l不垂直于x軸時,設(shè)AB:y=kx+m,A(x1,y1)B(x2,y2),與橢圓方程聯(lián)立方程組消掉y得x的一元二次方程,由韋達(dá)定理即及=0可得m,k的關(guān)系式,分別代入直線方程可求得定點(diǎn)坐標(biāo),②當(dāng)直線l垂直于x軸時,直線AB:,檢驗即可;
          解答:解:(1)設(shè)橢圓的方程為:,
          由題意得,a=2,所以c=,
          又b2=a2-c2=1,
          所以橢圓的方程為:;
          (2)①當(dāng)直線l不垂直于x軸時,設(shè)AB:y=kx+m,A(x1,y1)B(x2,y2),
          ,得(1+4k2)x2+8kmx+4(m2-1)=0,,,
          =
          ∴12k2+5m2-16km=0,即(6k-5m)(2k-m)=0,解得,
          當(dāng)時,恒過定點(diǎn);
          當(dāng)m=2k時,AB:y=kx+2k恒過定點(diǎn)(-2,0),不符合題意舍去;
          ②當(dāng)直線l垂直于x軸時,直線AB:,則AB與橢圓C相交于,,
          ,∵PA⊥PB,滿足題意,
          綜上可知,直線AB恒過定點(diǎn),且定點(diǎn)坐標(biāo)為
          點(diǎn)評:本題考查直線與圓錐曲線的位置關(guān)系及橢圓方程的求解,考查分類討論思想,考查學(xué)生分析問題解決問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的中心在坐標(biāo)原點(diǎn),橢圓C任意一點(diǎn)P到兩個焦點(diǎn)F1(-
          3
          ,0)
          F2(
          3
          ,0)
          的距離之和為4.
          (1)求橢圓C的方程;
          (2)設(shè)過(0,-2)的直線l與橢圓C交于A、B兩點(diǎn),且
          OA
          OB
          =0
          (O為坐標(biāo)原點(diǎn)),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,
          32
          )在橢圓C上.
          (I)求橢圓C的方程;
          (II)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2M⊥l,求四邊形F1MNF2面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)P(
          3
          ,
          1
          2
          )
          ,離心率是
          3
          2

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)直線l過點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
          1
          2
          ,它的一個頂點(diǎn)恰好是拋物線y=
          3
          12
          x2的焦點(diǎn).
          (I)求橢圓C的標(biāo)準(zhǔn)方程;
          (II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
          (III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求
          OS
          OT
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的中心在坐標(biāo)原點(diǎn),它的一條準(zhǔn)線為x=-
          5
          2
          ,離心率為
          2
          5
          5

          (1)求橢圓C的方程;
          (2)過橢圓C的右焦點(diǎn)F作直線l交橢圓于A、B兩點(diǎn),交y軸于M點(diǎn),若
          MA
          =λ1
          AF
          , 
          MB
          =λ2
          BF
          ,求λ12的值.

          查看答案和解析>>

          同步練習(xí)冊答案