日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
          (1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (2)當(dāng)a=4時(shí),是否存在實(shí)數(shù)m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說(shuō)明理由;
          (3)設(shè)定義在D上的函數(shù)y=h(x)的圖象在點(diǎn)P(x,h(x))處的切線方程為l:y=g(x),當(dāng)x≠x時(shí),若在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”.當(dāng)a=4,試問y=f(x)是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.
          【答案】分析:(1),由此能求出f(x)的單調(diào)遞增區(qū)間.
          (2)當(dāng)a=4時(shí),,其中x>0,令,方程無(wú)解,由此推導(dǎo)出不存在實(shí)數(shù)m使得直線6x+y+m=0恰為曲線y=f(x)的切線.
          (3)當(dāng)a=4時(shí),函數(shù)y=f(x)在其圖象上一點(diǎn)P(x,f(x))處的切線方程為.由此能推導(dǎo)出y=f(x)存在“類對(duì)稱點(diǎn)”,是一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo).
          解答:解:(1)∵f(x)=x2-(a+2)x+alnx,
          ,其中x>0,
          令f'(x)=0,得x=1或
          ∵a>2,∴
          當(dāng)0<x<1及時(shí),f'(x)>0;
          當(dāng)時(shí),f'(x)<0;
          ∴f(x)的單調(diào)遞增區(qū)間為
          (2)當(dāng)a=4時(shí),,其中x>0,
          ,方程無(wú)解,
          ∴不存在實(shí)數(shù)m使得直線6x+y+m=0恰為曲線y=f(x)的切線.
          (3)由(2)知,當(dāng)a=4時(shí),函數(shù)y=f(x)在其圖象上一點(diǎn)P(x,f(x))處的切線方程為,
          設(shè),
          則φ(x)=0.

          上單調(diào)遞減,
          時(shí),φ(x)<φ(x)=0,此時(shí);
          上單調(diào)遞減,
          時(shí),φ(x)>φ(x)=0,此時(shí)
          ∴y=f(x)在上不存在“類對(duì)稱點(diǎn)”.
          ,
          ∴φ(x)在(0,+∞)上是增函數(shù),
          當(dāng)x>x時(shí),φ(x)>φ(x)=0,
          當(dāng)x<x時(shí),φ(x)<φ(x)=0,故
          即此時(shí)點(diǎn)P是y=f(x)的“類對(duì)稱點(diǎn)”
          綜上,y=f(x)存在“類對(duì)稱點(diǎn)”,是一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo).
          點(diǎn)評(píng):本題考查函數(shù)的單調(diào)增區(qū)間的求法,探索滿足條件的實(shí)數(shù)的求法,探索函數(shù)是否存在“類對(duì)稱點(diǎn)”.解題時(shí)要認(rèn)真審題,注意分類討論思想和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案