日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)
          (1)求函數(shù)y=f(x)的極值;
          (2)若存在實(shí)數(shù)x0∈(﹣1,0),且 ,使得 ,求實(shí)數(shù)a的取值范圍.

          【答案】
          (1)解:f′(x)=ax2+2x,

          令f′(x)=0得x2=0,

          x

          0

          (0,+∞)

          f′(x)

          +

          0

          _

          0

          +

          f(x)

          極大值

          極小值

          ∴函數(shù)y=f(x)的極大值為 ;

          極小值為f(0)=0.


          (2)解:若存在 ,使得 ,

          則由(1)可知,需要 (如圖1)或 (如圖2).

          (圖1),

          (圖2),

          于是可得


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(2)根據(jù)函數(shù)的單調(diào)性得到關(guān)于a的不等式組,結(jié)合圖象解出即可.
          【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】過(guò)點(diǎn)C(3,4)且與軸,軸都相切的兩個(gè)圓的半徑分別為,則=______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知集合A={x|0<x<3},B= ,則集合A∩(RB)為(
          A.[0,1)
          B.(0,1)
          C.[1,3)
          D.(1,3)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法:①殘差可用來(lái)判斷模型擬合的效果;

          ②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

          ③線(xiàn)性回歸方程必過(guò) ;

          ④在一個(gè)2×2列聯(lián)表中,由計(jì)算得=13.079,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系(其中);

          其中錯(cuò)誤的個(gè)數(shù)是(

          A. 0 B. 1 C. 2 D. 3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿(mǎn)足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
          (1)求證: ;
          (2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
          (3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在下列命題中:
          ①存在一個(gè)平面與正方體的12條棱所成的角都相等;
          ②存在一個(gè)平面與正方體的6個(gè)面所成較小的二面角都相等;
          ③存在一條直線(xiàn)與正方體的12條棱所成的角都相等;
          ④存在一條直線(xiàn)與正方體的6個(gè)面所成的角都相等.
          其中真命題的個(gè)數(shù)為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖三棱柱中,側(cè)面為菱形,.

          (Ⅰ)證明:;

          (Ⅱ)若,AB=BC,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn) )的焦點(diǎn)為 ,點(diǎn) 在拋物線(xiàn),直線(xiàn) 與拋物線(xiàn) 交于 , 兩點(diǎn) 為坐標(biāo)原點(diǎn).

          (1)求拋物線(xiàn) 的方程;

          (2)求 的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線(xiàn)l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
          (Ⅰ)設(shè)P為線(xiàn)段MN的中點(diǎn),求直線(xiàn)OP的平面直角坐標(biāo)方程;
          (Ⅱ)判斷直線(xiàn)l與圓C的位置關(guān)系.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案