【答案】(1)見解析;(2)
【解析】
試題分析:(1)由四邊形是菱形可以得到
,結(jié)合
有
平面
,因此
,根據(jù)
是
的中點(diǎn)得到
.(2)由題設(shè)條件可證明
,從而
兩兩相互垂直,設(shè)
為單位長,則建立如圖所示空間直角坐標(biāo)系
,通過計算半平面的法向量的夾角來計算二面角的余弦值.
解析:(1)連接,交
于點(diǎn)
,連接
,因?yàn)閭?cè)面
為菱形,所以
,且
為
及
的中點(diǎn),又
,
,所以
平面
.由于
平面
,故
.又
,故
.
(2)因?yàn)?/span>,且
為
的中點(diǎn),所以
.又因?yàn)?/span>
,所以
,故
,從而
兩兩相互垂直,
為坐標(biāo)原點(diǎn),
的方向?yàn)?/span>
軸正方向,
為單位長,建立如圖所示空間直角坐標(biāo)系
.
因?yàn)?/span>,所以
為等邊三角形,又
,則
,
.
,
,設(shè)
是平面
的法向量,則
,即
,所以可取
,設(shè)
是平面
的法向量,則
,同理可取
,
,所以二面角
的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax,其中e為自然對數(shù)的底數(shù),a為常數(shù).
(1)若對函數(shù)f(x)存在極小值,且極小值為0,求a的值;
(2)若對任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面,
分別是
的中點(diǎn).
(1)求證: 平面平面
;
(2)求證: 平面
;
(3)求三棱錐體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的極值;
(2)若存在實(shí)數(shù)x0∈(﹣1,0),且 ,使得
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信搶紅包”自2015年以來異;鸨谀硞微信群某次進(jìn)行的搶紅包活動中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信搶紅包”自2015年以來異;鸨,在某個微信群某次進(jìn)行的搶紅包活動中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率為
,F(xiàn)是橢圓C的右焦點(diǎn).過點(diǎn)F且斜率為k(k≠0)的直線l與橢圓C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)求n的值;
(2)若線段AB的垂直平分線在y軸的截距為 ,求k的值;
(3)是否存在點(diǎn)P(t,0),使得PF為∠APB的平分線?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市為促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾分類投放情況,先隨機(jī)抽取了該市三類垃圾箱總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸);
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計廚余垃圾投放正確的概率;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c的方差s2最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時s2的值.
(求:S2= [
+
+…+
],其中
為數(shù)據(jù)x1 , x2 , …,xn的平均數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com