日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在120°的二面角P-a-Q的兩個面P和Q內(nèi),分別有點A和點B 已知點A和點B到棱a的距離分別為2和4,且線段AB=10,
          (1)求直線AB和棱a所成的角;
          (2)求直線AB和平面Q所成的角.

          解:(1)在平面P內(nèi)作直線AD⊥a于點D,在平面Q內(nèi),作直線BE⊥a于點E,
          從點D作a的垂線與從點B作a的平行線相交于點C.
          ∴∠ABC等于AB和a所成的角,
          ∠ADC為兩面角P-a-Q的平面角,
          ∴∠ADC=120°,
          又AD=2,BCDE為矩形,∴CD=BE=4.
          連接AC,由余弦定理得AC2=AD2+CD2-2AD•CDcos∠ADC=22+42-2×2×4×cos120°=28.

          又∵AD⊥a,CD⊥a,∴a⊥平面ACD,
          ∵BC∥a,∴BC⊥平面ACD,
          ∴BC⊥AC.
          在直角△ABC中,

          (2)在△ACD所在的平面內(nèi),作AF⊥CD交CD的延長線于點F.
          ∵平面ACD⊥平面Q,∴AF⊥平面Q.
          在△ADF中,∠ADF=60°,AD=2,∴AF=
          連接BF,于是∠ABF是AB和平面Q所成的角,
          在△ABF為直角三角形,

          分析:(1)如圖所示,在平面P內(nèi)作直線AD⊥a于點D,在平面Q內(nèi),作直線BE⊥a于點E,過點D作DC⊥a,與從點B作CB∥a相交于點C.∠ABC等于AB和a所成的角,∠ADC為兩面角P-a-Q的平面角,
          利用余弦定理即可得到AC,由a⊥平面ACD,BC∥a即可得到BC⊥平面ACD,在直角△ABC中求出sin∠ABC即可;
          (2)在△ACD所在的平面內(nèi),作AF⊥CD交CD的延長線于點F,利用面面垂直的性質(zhì)即可證明AF⊥平面Q,從而得到∠ABF是直線AB和平面Q所成的角.
          點評:熟練掌握線面與面面垂直的判定和性質(zhì)定理、線面角、異面直線所成的角、余弦定理及常作的輔助線是解題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          在120°的二面角α-l-β內(nèi)有一點P,P在平面α、β內(nèi)的射影A、B分別落在半平面αβ內(nèi),且PA=3,PB=4,則P到l的距離為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在120°的二面角P-a-Q的兩個面P和Q內(nèi),分別有點A和點B 已知點A和點B到棱a的距離分別為2和4,且線段AB=10,
          (1)求直線AB和棱a所成的角;
          (2)求直線AB和平面Q所成的角.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:013

          120°的二面角α—l—β內(nèi)有一點P, P到平面α、β的距離分別是58, P點在平面α、β上的射影之間的距離是   

          [  ]

          A5   B6   C7   D8

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (08年孝感市統(tǒng)一考試二) 在120°的二面角內(nèi)放一個半徑為5的球,切兩個半平面于兩點,則這兩個切點在球面上的球面距離是_________。

          查看答案和解析>>

          同步練習冊答案