日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=loga(x+1),若函數(shù)y=g(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象:
          (1)寫出g(x)的解析式
          (2)記F(x)=f(x)+g(x),討論F(x)的單調(diào)性
          (3)若a>1,x∈[0,1)時(shí),總有F(x)=f(x)+g(x)≥m成立,求實(shí)數(shù)m的取值范圍.
          【答案】分析:(1)由已知可得函數(shù)f(x)=loga(x+1)與函數(shù)y=g(x)的圖象關(guān)于原點(diǎn)對稱,進(jìn)而利用坐標(biāo)法,可得g(x)的解析式
          (2)根據(jù)F(x)=f(x)+g(x),結(jié)合(1)的結(jié)論,求出F(x)的解析式,利用導(dǎo)數(shù)法,求出內(nèi)函數(shù)的單調(diào)性,結(jié)合對數(shù)函數(shù)的單調(diào)性與復(fù)合函數(shù)同增異減的原則,可分析出F(x)的單調(diào)性
          (3)若a>1,x∈[0,1)此時(shí)結(jié)合(2)的結(jié)論,可得函數(shù)為增函數(shù),若F(x)=f(x)+g(x)≥m恒成立,僅須F(x)的最小值,大于等于m即可.
          解答:解:(1)設(shè)P(x,y)是函數(shù)y=g(x)圖象上的任意一點(diǎn)
          則P關(guān)于原點(diǎn)的對稱點(diǎn)Q的坐標(biāo)為(-x,-y)
          ∵已知點(diǎn)Q在函數(shù)f(x)的圖象上
          ∴-y=f(-x),而f(x)=loga(x+1)
          ∴-y=loga(-x+1)
          ∴y=-loga(-x+1)
          而P(x,y)是函數(shù)y=g(x)圖象上的點(diǎn)
          ∴y=g(x)=-loga(-x+1)=-loga(1-x)
          (2)F(x)=f(x)+g(x)=loga(x+1)-loga(1-x)=,
          則函數(shù)F(x)=的定義域?yàn)椋?1,1),
          令h(x)=,則h′(x)=,
          ∵當(dāng)x∈(-1,1)時(shí),h′(x)≥0恒成立
          故h(x)=在(-1,1)上單調(diào)遞增,
          當(dāng)0<a<1時(shí),y=logat為減函數(shù),此時(shí)F(x)=為減函數(shù),
          當(dāng)a>1時(shí),y=logat為增函數(shù),此時(shí)F(x)=為增函數(shù).
          (3)由(2)得若a>1
          當(dāng)x∈[0.1)時(shí),F(xiàn)(x)=為增函數(shù)
          此時(shí)F(x)min=F(0)=loga1=0
          ∴m≤0
          ∴所求m的取值范圍:m≤0
          點(diǎn)評:本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,函數(shù)解析式的求法,函數(shù)單調(diào)性的判斷與證明,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案