【題目】在四棱錐中中,
是邊長為
的等邊三角形,底面
為直角梯形,
,
,
,
.
(1)證明:;
(2)求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)取的中點為
,連接
,由
是等邊三角形可得
,再由底面
為直角梯形,結(jié)合已知的邊長可證得
,于是得
平面
,從而證得結(jié)果;
(2)由條件可得可知兩兩垂直,所以以
為坐標(biāo)原點建立直角坐標(biāo)系
,利用向量法求出二面角
的余弦值.
(1)證明:取的中點為
,連接
,因為
是等邊三角形,所以
.
因為在直角梯形中,
,
,
,所以
所以為等腰三角形,所以
因為,所以
平面
因為平面
,所以
.
(2)解:因為,
,
為正三角形
的
邊上的高,所以
.
因為,所以
,由(1)可知
兩兩垂直.
以為坐標(biāo)原點建立直角坐標(biāo)系
,則
,
,
,
則,
,
設(shè)平面的法向量為
則,即
令
得
.
設(shè)平面的法向量為
則,即
令
,則
因為二面角為銳二面角,所以其余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在脫貧攻堅中,某市教育局定點幫扶前進(jìn)村戶貧困戶.駐村工作隊對這
戶村民的貧困程度以及家庭平均受教育程度進(jìn)行了調(diào)査,并將該村貧困戶按貧困程度分為“絕對貧困戶”與“相對貧困戶”,同時按家庭平均受教育程度分為“家庭平均受教育年限
年”與“家庭平均受教育年限
年”,具體調(diào)査結(jié)果如下表所示:
平均受教育年限 | 平均受教育年限 | 總計 | |
絕對貧困戶 | 10 | 40 | 50 |
相對貧困戶 | 20 | 30 | 50 |
總計 | 30 | 70 | 100 |
(1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動,現(xiàn)通過分層抽樣從“家庭平均受教育年限年”的
戶貧困戶中任意抽取
戶,再從所抽取的
戶中隨機(jī)抽取
戶參加“談心談話”活動,求至少有
戶是絕對貧困戶的概率;
(2)根據(jù)上述表格判斷:是否有的把握認(rèn)為貧困程度與家庭平均受教育程度有關(guān)?
參考公式:
參考數(shù)據(jù):
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的左頂點
作斜率為2的直線,與橢圓的另一個交點為
,與
軸的交點為
,已知
.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點
,且與直線
相交于點
,若
軸上存在一定點
,使得
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,四邊形
是菱形,
,
,且
,
交于點
,
是
上任意一點.
(1)求證: ;
(2)已知二面角的余弦值為
,若
為
的中點,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知真命題:“函數(shù)的圖象關(guān)于點
成中心對稱圖形”的充要條件為“函數(shù)
是奇函數(shù)”.
(Ⅰ)將函數(shù)的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)
圖象對稱中心的坐標(biāo);
(Ⅱ)求函數(shù)圖象對稱中心的坐標(biāo);
(Ⅲ)已知命題:“函數(shù)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實數(shù)
和
,使得函數(shù)
是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進(jìn)行修改,使之成為真命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左頂點為
,右頂點為
,已知橢圓
的離心率為
,且以線段
為直徑的圓被直線
所截的弦長為
.
(1)求橢圓的方程;
(2)記橢圓的右焦點為
,過點
且斜率為
的直線交橢圓于
兩點.若線段
的垂直平分線與
軸交于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中m為常數(shù),且
是函數(shù)
的極值點.
(Ⅰ)求m的值;
(Ⅰ)若在
上恒成立,求實數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的底面邊長為
,側(cè)棱
,E為側(cè)棱PB上一點且
,在
內(nèi)(包括邊界)任意取一點F,則
的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的最大值;
(2)設(shè)函數(shù),若對任意實數(shù)
,當(dāng)
時,函數(shù)
的最大值為
,求a的取值范圍;
(3)若數(shù)列的各項均為正數(shù),
,
.求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com