日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.求證:
          (1)平面EFG平面ABC;
          (2)BC⊥SA.
          (1)∵△ASB中,SA=AB且AF⊥SB,∴F為SB的中點.
          ∵E、G分別為SA、SC的中點,
          ∴EF、EG分別是△SAB、△SAC的中位線,可得EFAB且EGAC.
          ∵EF?平面ABC,AB?平面ABC,
          ∴EF平面ABC,同理可得EG平面ABC
          又∵EF、EG是平面EFG內(nèi)的相交直線,
          ∴平面EFG平面ABC;
          (2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,
          AF?平面ASB,AF⊥SB.
          ∴AF⊥平面SBC.
          又∵BC?平面SBC,∴AF⊥BC.
          ∵AB⊥BC,AF∩AB=A,∴BC⊥平面SAB.
          又∵SA?平面SAB,∴BC⊥SA.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:填空題

          已知矩形的周長為36,矩形繞它的一條邊旋轉(zhuǎn)形成一個圓柱,要使旋轉(zhuǎn)形成的圓柱的側(cè)面積最大,則矩形的長為______.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          在直三棱柱ADE-BCF中,∠ADE=90°,AD=AE=EF=2,M,N分別是AF,BC的中點.
          (1)求證:MN平面CDEF;
          (2)求多面體A-CDEF的體積V.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD,點M、N分別為側(cè)棱PD、PC的中點
          (1)求證:CD平面AMN;
          (2)求證:AM⊥平面PCD.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,在四棱錐E-ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F(xiàn)為CE的中點,求證:
          (1)AE平面BDF;
          (2)平面BDF⊥平面ACE.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD,E是棱PA的中點.
          (1)求證:PC平面EBD;
          (2)求三棱錐P-EBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          已知a,b為兩條直線,α,β為兩個平面,下列四個命題
          ①ab,aα⇒bα;②a⊥b,a⊥α⇒bα;
          ③aα,βα⇒aβ;④a⊥α,β⊥α⇒aβ,
          其中不正確的有( 。
          A.1個B.2個C.3個D.4個

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          在四棱錐P-OABC中,PO⊥底面OABC,∠OCB=60°,∠AOC=∠ABC=90°,且OP=OC=BC=2.
          (1)若D是PC的中點,求證:BD平面AOP;
          (2)求二面角P-AB-O的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點,設(shè)Q是CC1上的點,問:當點Q在什么位置時,平面D1BQ平面PAO?

          查看答案和解析>>

          同步練習冊答案