【題目】如圖,四棱錐中,
,側(cè)面
為等邊三角形,
,
.
(Ⅰ)證明: 平面
;
(Ⅱ)求與平面
所成的角的大小.
【答案】(1)見解析(2)
【解析】試題分析:(Ⅰ)由問(wèn)題,可根據(jù)線面垂直判定定理的條件要求,從題目條件去尋相關(guān)的信息,先證線線垂直,即,從而問(wèn)題可得解;(Ⅱ)要求直線與平面所成角,一般步驟是先根據(jù)圖形特點(diǎn)作出所求的線面角,接著將該所在三角形的其他要素(包括角、邊或是三角形的形狀等)算出來(lái),再三角形的性質(zhì)或是正弦定理、余弦定理來(lái)進(jìn)行運(yùn)算,從問(wèn)題得于解決(類似問(wèn)題也可以考慮采用坐標(biāo)法來(lái)解決).
試題解析:(Ⅰ)取的中點(diǎn)E,連接
,
則四邊形為矩形,
所以,
所以,
因?yàn)閭?cè)面為等邊三角形,
,
所以,且
,
又因?yàn)?/span>,
所以,
所以.
又,
所以平面
.
(Ⅱ)
過(guò)點(diǎn)作
⊥
于點(diǎn)
,
因?yàn)?/span>,
所以平面
.
又平面
,
由平面與平面垂直的性質(zhì),
知平面
,
在中,由
,
得,
所以.
過(guò)點(diǎn)作
平面
于
,連接
,
則即為
與平面
所成的角,
因?yàn)?/span>平面
,
所以平面
,
又平面
,
所以.
在中,由
,
求得.
在中,
,
所以,
由,
得,
即,
解得,
所以,
故與平面
所成角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓的兩焦點(diǎn)分別為雙曲線
的頂點(diǎn),直線
與橢圓
交于
、
兩點(diǎn),且
,點(diǎn)
是橢圓
上異于
、
的任意一點(diǎn),直線
外的點(diǎn)
滿足
,
.
(1)求點(diǎn)的軌跡方程;
(2)試確定點(diǎn)的坐標(biāo),使得
的面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌汽車的店,對(duì)最近100份分期付款購(gòu)車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率
;
(2)按分層抽樣方式從這100為顧客中抽取5人,再?gòu)某槿〉?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,
平面
,底面
為直角梯形,
,
,
,且
為線段
上的一動(dòng)點(diǎn).
(Ⅰ)若為線段
的中點(diǎn),求證:
平面
;
(Ⅱ)當(dāng)直線與平面
所成角小于
,求
長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至
處,此時(shí)測(cè)得其東北方向與它相距
海里的
處有一外國(guó)船只,且
島位于海監(jiān)船正東
海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)海里的速度沿正南方向航行,為了將該船攔截在離
島
海里處,不讓其進(jìn)入
島
海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗(yàn),潛水員下潛的平均速度為(米/單位時(shí)間),每單位時(shí)間的用氧量為
(升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為
(升),返回水面的平均速度為
(米/單位時(shí)間),每單位時(shí)間用氧量為
(升),記該潛水員在此次考察活動(dòng)中的總用氧量為
(升).
(1)求關(guān)于
的函數(shù)關(guān)系式;
(2)若,求當(dāng)下潛速度
取什么值時(shí),總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程和離心率.
(2)設(shè)點(diǎn),動(dòng)點(diǎn)
在
軸上,動(dòng)點(diǎn)
在橢圓
上,且點(diǎn)
在
軸的右側(cè).若
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條不重合的直線和兩個(gè)不重合的平面
,若
,則下列四個(gè)命題:①若
,則
;②若
,則
; ③若
,則
;④若
,則
,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了選拔參加自行車比賽的選手,對(duì)自行車運(yùn)動(dòng)員甲、乙兩人在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計(jì)甲、乙兩運(yùn)動(dòng)員的最大速度的平均數(shù)和方差,并判斷誰(shuí)參加比賽更合適.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com