日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)g(x)=Asin(wx+φ)(A>0,w>0,0<φ<π)的圖象如圖所示,其中點(diǎn)A(數(shù)學(xué)公式,2)、B(數(shù)學(xué)公式,0)分別是函數(shù)的最大值點(diǎn)和零點(diǎn).
          (I)求函數(shù)y=g(x)的解析式;
          (Ⅱ)若函數(shù)f(x)=2g(x)cosx+m在[0,數(shù)學(xué)公式]上的最大值為6,求函數(shù)f(x)在R上的最小值及相應(yīng)的x值的集合.

          解:(Ⅰ)根據(jù)圖象可知 =-,解得T=2π. 再由 =2π,可得w=1.
          由頂點(diǎn)坐標(biāo)可得A=2,所以,g(x)=2sin(x+φ),
          將點(diǎn)A點(diǎn)的坐標(biāo)代入函數(shù)y=g(x),可得sin(+φ)=1,∴+φ=2kπ+,k∈z.
          再結(jié)合0<φ<π求得 φ=
          所以,g(x)=2sin(x+).…(6分)
          (Ⅱ)f(x)=2g(x)cosx+m=4sin(x+)cosx+m=4(sinx+cosx)cosx+m
          =2sinxcosx+2cos2x+m=sin2x+2cos2x+1+m=2sin(2x+)+m+1.…(9分)
          由x∈[0,],得 2x+∈[,],于是函數(shù)f(x)的最大值為2+m+1=6,解得m=3.
          所以f(x)=2sin(2x+)+4.
          當(dāng)x∈R時(shí),f(x)的最小值為-2+4=2,此時(shí)x滿足2x+=2kπ+,k∈z,
          相應(yīng)的x值的集合為{x|x=kπ+,k∈z}.…(12分)
          分析:(Ⅰ)根據(jù)圖象可知 =-,解得T的值,進(jìn)而求得w,再根據(jù)頂點(diǎn)坐標(biāo)可得A=2,將點(diǎn)A點(diǎn)的坐標(biāo)代入函數(shù)y=g(x),可得sin(+φ)=1,結(jié)合0<φ<π求得 φ,從而得到函數(shù)解析式.
          (Ⅱ)根據(jù)兩角和差的正弦函數(shù)化簡f(x)的解析式為2sin(2x+)+m+1,根據(jù)x的范圍求得f(x)的最大值為2+m+1=6,求得m的值,即可確定f(x)的解析式,由此求得函數(shù)取得最小值時(shí)x值的集合.
          點(diǎn)評:本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求解析式,兩角和差的正弦函數(shù),正弦函數(shù)的定義域和值域,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)g(x)=x3-3ax2-3t2+t(t>0)
          (1)求函數(shù)g(x)的單調(diào)區(qū)間;
          (2)曲線y=g(x)在點(diǎn)M(a,g(a))和N(b,g(b))(a<b)處的切線都與y軸垂直,若方程g(x)=0在區(qū)間[a,b]上有解,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)g(x)=lnx,0<r<s<t<1則(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a+lnx
          x
          ,且f(x)+g(x)=
          (x+1)lnx
          x

          (1)若函數(shù)f(x)在區(qū)間[1,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍;
          (2)若函數(shù)g(x)在[1,e]上的最小值為
          3
          2
          ,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•淄博一模)已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
          (Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
          (Ⅱ)當(dāng)a<-2時(shí),求f(x)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)-3<a<-2時(shí),若對?λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•濟(jì)寧二模)已知函數(shù)g(x)=
          x
          lnx
          ,f(x)=g(x)-ax(a>0).
          (I)求函數(shù)g(x)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
          (Ⅲ)當(dāng)a≥
          1
          4
          時(shí),若?x1,x2∈[e,e2]使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案