日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)g(x)=x3-3ax2-3t2+t(t>0)
          (1)求函數(shù)g(x)的單調(diào)區(qū)間;
          (2)曲線y=g(x)在點(diǎn)M(a,g(a))和N(b,g(b))(a<b)處的切線都與y軸垂直,若方程g(x)=0在區(qū)間[a,b]上有解,求實(shí)數(shù)t的取值范圍.
          分析:(1)求導(dǎo),令f′(x)>0,令f′(x)<0分別得x的取值范圍,即為f(x)的單調(diào)區(qū)間.
          (2)由曲線y=g(x)在點(diǎn)M和N處的切線都與y軸垂直,知g′(a)=g′(b)=0,得a,b,又方程g(x)=0在區(qū)間[a,b]上有解,知曲線g(x)在區(qū)間[0,2t]上與x軸相交,由(1)知g(x)在[0,2t]上單調(diào),可得g(0)g(2t)≤0,解不等式得實(shí)數(shù)t的取值范圍.
          解答:解:(1)由g'(x)=3x2-6tx>0和g′(x)=3x2-6tx<0(t>0)
          知g(x)在(-∞,0)和(2t,+∞)上是增函數(shù),
          g(x)在(0,2t)上是減函數(shù)
          即g(x)單調(diào)遞增區(qū)間為(-∞,0)和(2t,+∞),
          g(x)單調(diào)遞減區(qū)間為(0,2t).(6分)
          (2)由曲線y=g(x)在點(diǎn)M(a,g(a))和N(b,g(b))(a<b)處的切線都與y軸垂直知,
          g′(a)=g′(b)=0,又a<b,所以a=0,b=2t,
          若方程g(x)=0在區(qū)間[a,b]上有解,即曲線g(x)在區(qū)間[0,2t]上與x軸相交,
          又g(x)在[0,2t]上單調(diào),所以g(0)g(2t)≤0,
          即t2(3t-1)(4t2+3t-1)≤0,
          得t∈[
          1
          4
          1
          3
          ].(12分)
          點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求函數(shù)的極值、導(dǎo)數(shù)幾何意義等知識(shí)點(diǎn);注意把方程解的個(gè)數(shù)問題轉(zhuǎn)化為對(duì)應(yīng)函數(shù)圖象的交點(diǎn)個(gè)數(shù)問題,可使問題直觀易懂.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于一切實(shí)數(shù)x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
          (1)若f(5)=9,求:f(-5);
          (2)已知x∈[2,7]時(shí),f(x)=(x-2)2,求當(dāng)x∈[16,20]時(shí),函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
          (3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)g(x)=ax2-2ax+1+b(a>0),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
          g(x)
          x

          (1)求a、b的值; 
          (2)當(dāng)
          1
          2
          ≤x≤2
          時(shí),求函數(shù)f(x)的值域;
          (3)若不等式f(2x)-k≥0在x∈[-1,1]上恒成立,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)、g(x),下列說法正確的是(  )
          A、f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)B、f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)C、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)D、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)一輪精品復(fù)習(xí)學(xué)案:2.1 函數(shù)及其表示(解析版) 題型:解答題

          已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于一切實(shí)數(shù)x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
          (1)若f(5)=9,求:f(-5);
          (2)已知x∈[2,7]時(shí),f(x)=(x-2)2,求當(dāng)x∈[16,20]時(shí),函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
          (3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案