日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)已知函數(shù)=
          (1) 若存在單調(diào)增區(qū)間,求的取值范圍;
          (2)是否存在實(shí)數(shù)>0,使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出的取值范圍?若不存在,請(qǐng)說明理由.
          (1)a的取值范圍是(-1, 0)∪(0, +∞)
          (2), 所以a的取值范圍是(1, )
          答:(1)由已知,得h(x)=  且x>0,  …………………...1f
          則hˊ(x)=ax+2-=,…………………………………………………2f
          ∵函數(shù)h(x)存在單調(diào)遞增區(qū)間,
          ∴hˊ(x)>0有解, 且解滿足……………………….……3f
          即不等式ax2+2x-1>0有滿足……………………..……4f
          當(dāng)a<0時(shí), y=ax2+2x-1的圖象為開口向下的拋物線, 要使ax2+2x-1≥0總有x>0的解, 則方程ax2+2x-1=0至少有一個(gè)不重復(fù)正根, 而方程ax2+2x-1=0總有兩個(gè)不相等的根時(shí), 則必定是兩個(gè)不相等的正根. 故只需Δ="4+4a>0," 即a>-1. 即-1<a<0……………….5f
          當(dāng)a>0 時(shí), y= ax2+2x-1的圖象為開口向上的拋物線,  ax2+2x-1≥0 一定有x>0的解.    …………………………………………………………………………….……...6f           
          綜上, a的取值范圍是(-1, 0)∪(0, +∞) ……………………………………….…….  7f
          解法二、同解法一…….
          即不等式ax2+2x-1>0有滿足……………………….……4f
          有解……………………………………………………….5f
          的最小值為……………………………………..……6f
          結(jié)合題設(shè)得a的取值范圍是(-1, 0)∪(0, +∞) ………………………………………  7f
          解法三、同解法一……….
          即不等式ax2+2x-1>0有滿足……………………..……4f
          (1)當(dāng), ,ax2+2x-1>0沒有符合條解………………………5f
          (2)當(dāng),方程的兩根是,此時(shí),區(qū)間是所求的增區(qū)間。.
          ………………………………………………………………………………………………6f
          當(dāng),方程的兩根是,,區(qū)間為所求的增區(qū)
          綜上, a的取值范圍是(-1, 0)∪(0, +∞) ……………………………………….…….  7f  
          (2)解法一、方程
          即為
          等價(jià)于方程ax2+(1-2a)x-lnx="0" .  …………………………………………………..  8f
          設(shè)H(x)= ax2+(1-2a)x-lnx, 于是原方程在區(qū)間()內(nèi)根的問題, 轉(zhuǎn)化為函數(shù)H(x)在區(qū)間()內(nèi)的零點(diǎn)問題………………………………………………………………….... 9f 
          Hˊ(x)=2ax+(1-2a)-=  ……….….….10f
          當(dāng)x∈(0, 1)時(shí), Hˊ(x)<0,  H(x)是減函數(shù);  當(dāng)x∈(1, +∞)時(shí), Hˊ(x)>0,  H(x)是增函數(shù);  
          若H(x)在()內(nèi)有且只有兩個(gè)不相等的零點(diǎn), 只須
                 ……………..…13f
          解得, 所以a的取值范圍是(1, )  …………………… …..14f
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題12分)  已知二次函數(shù)。
          (1)指出圖像的開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
          (2)畫出它的圖像,并說明其圖像由的圖像經(jīng)過怎樣平移得來;
          (3)求函數(shù)的最大值或最小值;
          (4)寫出函數(shù)的單調(diào)區(qū)間(不必證明)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          對(duì)任意,函數(shù)的值恒大于零,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (滿分12分)
          已知函數(shù)f ( x )=x 2+ax+b
          (1)若f (x)在[ 1,+∞)內(nèi)遞增,求實(shí)數(shù)a的范圍。
          (2)若對(duì)任意的實(shí)數(shù)x都有f (1+x)="f" (1-x) 成立,
          ①求實(shí)數(shù) a的值;
          ②證明函數(shù)f(x)在區(qū)間[1,+∞上是增函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分10分)求函數(shù)上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          (本題滿分9分)
          已知函數(shù) 
          (1)當(dāng)時(shí),求函數(shù)的最大值和最小值;
          (2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù) 

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)函數(shù),有                     ( 。
          A.在定義域內(nèi)無零點(diǎn);
          B.存在兩個(gè)零點(diǎn),且分別在、內(nèi);
          C.存在兩個(gè)零點(diǎn),且分別在、內(nèi); 高#考#資#源#
          D.存在兩個(gè)零點(diǎn),都在內(nèi)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知二次函數(shù),若,則        

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          現(xiàn)函數(shù)在區(qū)間上是                                          (   )
          A.遞減B.遞增C.先減后增D.先增后減

          查看答案和解析>>

          同步練習(xí)冊(cè)答案