日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•濟南二模)等比數(shù)列{an}的公比為q,前n項的積為Tn,并且滿足a1>1,a2009•a2010-1>0,(a2009-1)(a2010-1)<0,給出下列結(jié)論①0<q<1;②a2009•a2011<1;③T2010是Tn中最大的;④使得Tn>1成立的最大的自然數(shù)是4018.其中正確結(jié)論的序號為
          ①②④
          ①②④
          .(將你認為正確的全部填上)
          分析:根據(jù)(a2009-1)(a2010-1)<0判斷出a2009<1或a2010<1,先看a2009<1,則可知a2010>1假設a2009<0,那么q<0,則可知a2010應與a1異號,推斷出a2010<0與a2010>1矛盾,假設不成立,推斷出q>0,根據(jù)a2009=a1q2008應推斷出a2009=a1q2008應該大于1假設不成立,進而綜合可推斷0<q<1判斷出①正確.由結(jié)論(1)可知數(shù)列從2010項開始小于1,進而可推斷出T2009是Tn中最大的③不正確,根據(jù)等比中項的性質(zhì)可知a2009•a2011=a22010<1推斷出②正確.根據(jù)等比中項的性質(zhì)可知當Tn=(a20092時,Tn>1成立的最大的自然數(shù),求的n推斷出④正確.
          解答:解:∵(a2009-1)(a2010-1)<0
          ∴a2009<1或a2010<1
          如果a2009<1,那么a2010>1
          如果a2009<0,那么q<0
          又a2010=a1q2009,所以a2010應與a1異號,即a2010<0
          和前面a2010>1的假設矛盾了
          ∴q>0
          又或者a2009<1,a2010>1,
          那么a2009=a1q2008應該大于1
          又矛盾了.因此q<1
          綜上所述 0<q<1,故①正確
          a2009•a2011=a22010<1故②正確.,
          由結(jié)論(1)可知數(shù)列從2010項開始小于1
          ∴T2009為最大項③不正確.
          由結(jié)論1可知數(shù)列由2010項開始小于1,
          Tn=a1a2a3…an
          ∵數(shù)列從第2010項開始小于1,
          ∴當Tn=(a20092時,Tn>1成立的最大的自然數(shù)
          求得n=4018,故④正確.
          故答案為:①②④
          點評:本題主要考查了等比數(shù)列的性質(zhì).考查了學生分析問題和解決問題的能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2010•濟南二模)函數(shù)f(x)=sin(x+
          π
          3
          )+asin(x-
          π
          6
          )
          的一條對稱軸方程為x=
          π
          2
          ,則a=( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2010•濟南二模)執(zhí)行右邊的框圖,則輸出的s是(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2010•濟南二模)在△ABC中,角A、B、C所對的邊分別為a,b,c,且2sin2
          A+B2
          +cos2C=1,a=1,b=2.

          (1)求C和c.
          (2)P為△ABC內(nèi)任一點(含邊界),點P到三邊距離之和為d,設P到AB,BC距離分別為x,y,用x,y表示d并求d的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2010•濟南二模)在△ABC中,∠ACB=90°,∠BAC=30°,AB的垂直平分線分別交AB,AC于D、E(圖一),沿DE將△ADE折起,使得平面ADE⊥平面BDEC(圖二).

          (1)若F是AB的中點,求證:CF∥平面ADE.
          (2)P是AC上任意一點,求證:平面ACD⊥平面PBE.
          (3)P是AC上一點,且AC⊥平面PBE,求二面角P-BE-C的大。

          查看答案和解析>>

          同步練習冊答案