如圖,已知四棱錐,底面
是等腰梯形,
且∥
,
是
中點(diǎn),
平面
,
,
是
中點(diǎn).
(1)證明:平面平面
;
(2)求平面與平面
所成銳二面角的余弦值.
(1)詳見解析;(2)
解析試題分析:(1)根據(jù)中位線可得∥
,從而可證得
∥平面
。證四邊形
為平行四邊形可得
∥平面
,從而可證得平面
平面
。(2)法一:延長(zhǎng)
、
交于點(diǎn)
,連結(jié)
,則
平面
,易證△
與△
全等。過
作
的垂線,則
與垂足的連線也垂直
。由二面角的平面角的定義可得所求二面角。再用余弦定理即可求其余弦值。法二空間向量法。由題意可以
為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系。根據(jù)各點(diǎn)的坐標(biāo)求出個(gè)向量的坐標(biāo),在根據(jù)數(shù)量積公式求各面的法向量,在用數(shù)量積公式求其兩法向量夾角的余弦值。注意兩法向量所成的角可能與二面角相等也可能為其補(bǔ)角。
試題解析:(1) 證明:
且
∥
,2分
則平行且等于
,即四邊形
為平行四邊形,所以
.
6分
(2) 『解法1』:
延長(zhǎng)、
交于點(diǎn)
,連結(jié)
,則
平面
,易證△
與△
全等,過
作
于
,連
,則
,由二面角定義可知,平面角
為所求角或其補(bǔ)角.
易求,又
,
,由面積橋求得
,所以
所以所求角為,所以
因此平面與平面
所成銳二面角的余弦值為
『解法2』:
以為原點(diǎn),
方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/0/1o4mh2.png" style="vertical-align:middle;" />軸,以平面
內(nèi)過
點(diǎn)且垂直于
方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/38/9/hmagr.png" style="vertical-align:middle;" />軸 以
方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/7/1z14n3.png" sty
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐E﹣ABCD中,矩形ABCD所在的平面與平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F(xiàn),G,H分別為BE,AE,BC的中點(diǎn)
(1)求證:DE∥平面FGH;
(2)若點(diǎn)P在直線GF上,=λ
,且二面角D﹣BP﹣A的大小為
,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P—GBCD中(如圖),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中點(diǎn),PG=4
(1)求異面直線GE與PC所成角的余弦值;
(2)若F點(diǎn)是棱PC上一點(diǎn),且,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),于
,延長(zhǎng)AE交BC于F,將
ABD沿BD折起,使平面ABD
平面BCD,如圖2所示.
(1)求證:AE⊥平面BCD;
(2)求二面角A–DC–B的余弦值.
(3)在線段上是否存在點(diǎn)
使得
平面
?若存在,請(qǐng)指明點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱AB上的動(dòng)點(diǎn).
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45o,求的值;
(3)寫出點(diǎn)E到直線D1C距離的最大值及此時(shí)點(diǎn)E的位置(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,側(cè)面PCD底面ABCD,PD
CD,底面ABCD是直角梯形,AB∥DC,
,
,
.
(1)求證:BC平面PBD:
(2)求直線AP與平面PDB所成角的正弦值;
(3)設(shè)E為側(cè)棱PC上異于端點(diǎn)的一點(diǎn),,試確定
的值,使得二面角E-BD-P的余弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐P—ABCD的底面是邊長(zhǎng)為2的菱形,∠DAB=60°,側(cè)棱,
,M、N兩點(diǎn)分別在側(cè)棱PB、PD上,
.
(1)求證:PA⊥平面MNC。
(2)求平面NPC與平面MNC的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com