日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ln x.
          (1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
          (2)若f(x)在[1,e]上的最小值為,求a的值;
          (3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
          (1)f(x)在(0,+∞)上是單調(diào)遞增函數(shù)
          (2)a=-.
          (3)a≥-1時(shí),f(x)<x2在(1,+∞)上恒成立

          試題分析:解 (1)由題意f(x)的定義域?yàn)?0,+∞),且f′(x)=.因?yàn)?i>a>0,所以f′(x)>0,故f(x)在(0,+∞)上是單調(diào)遞增函數(shù).  3分
          (2)由(1)可知,f′(x)=.
          ①若a≥-1,則xa≥0,即f′(x)≥0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為增函數(shù),
          所以f(x)minf(1)=-a,所以a=- (舍去).  5分
          ②若a≤-e,則xa≤0,即f′(x)≤0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為減函數(shù),
          所以f(x)minf(e)=1-a=- (舍去).   7分
          ③若-e<a<-1,令f′(x)=0得x=-a,當(dāng)1<x<-a時(shí),f′(x)<0,所以f(x)在[1,-a]上為減函數(shù);當(dāng)-a<x<e時(shí),f′(x)>0,所以f(x)在[-a,e]上為增函數(shù),所以f(x)minf(-a)=ln(-a)+1=a=-
          綜上所述,a=-.     9分
          (3)因?yàn)?i>f(x)<x2,所以ln x<x2.又x>0,所以a>xln xx3.
          g(x)=xln xx3,
          h(x)=g′(x)=1+ln x-3x2,h′(x)=-6x.   11分
          因?yàn)?i>x∈(1,+∞)時(shí),h′(x)<0,h(x)在(1,+∞)上是減函數(shù).
          所以h(x)<h(1)=-2<0,即g′(x)<0,
          所以g(x)在[1,+∞)上也是減函數(shù),則g(x)<g(1)=-1,
          所以a≥-1時(shí),f(x)<x2在(1,+∞)上恒成立.  13分
          點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于基礎(chǔ)題。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          三次函數(shù)當(dāng)是有極大值4,當(dāng)是有極小值0,且函數(shù)過(guò)原點(diǎn),則此函數(shù)是(     )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)
          (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
          (2)對(duì)任意,在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)
          (Ⅰ)求曲線在點(diǎn)處的切線方程;
          (Ⅱ)直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
          (2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)
          (I)當(dāng)時(shí),討論函數(shù)的單調(diào)性:
          (Ⅱ)若函數(shù)的圖像上存在不同兩點(diǎn),,設(shè)線段的中點(diǎn)為,使得在點(diǎn)處的切線與直線平行或重合,則說(shuō)函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”.
          試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知實(shí)數(shù)ab滿足a≤1,b≤1,則函數(shù)有極值的概率為(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)為常數(shù),e是自然對(duì)數(shù)的底數(shù).
          (Ⅰ)當(dāng)時(shí),證明恒成立;
          (Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)
          (1)若對(duì)任意的恒成立,求實(shí)數(shù)的最小值.
          (2)若且關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
          (3)設(shè)各項(xiàng)為正的數(shù)列滿足:求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案