日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          1)若曲線在點處的切線為 軸的交點坐標(biāo)為,求的值;

          2)討論的單調(diào)性.

          【答案】(1);(2)見解析

          【解析】分析:(1)對函數(shù)求導(dǎo),再分別求出, ,根據(jù)點斜式寫出切線方程,然后根據(jù)軸的交點坐標(biāo)為,即可求得的值;(2)先對函數(shù)求導(dǎo)得,再對進行分類討論,從而對的符號進行判斷,進而可得函數(shù)的單調(diào)性.

          詳解:1.

          ∴切線方程為:

          .

          .

          2=.

          當(dāng)時, , , 為減函數(shù), , , 為增函數(shù);

          當(dāng)時,令,得, ,

          ,則,

          當(dāng)時, , 為減函數(shù),當(dāng)時, 為增函數(shù).

          (當(dāng)且僅當(dāng)時取“=”

          ∴當(dāng)時, 為增函數(shù), 為減函數(shù), 為減函數(shù).

          當(dāng)時, 上為增函數(shù).

          綜上所述: 時, 上為減函數(shù),在上為增函數(shù), 時, 上為減函數(shù),在上為增函數(shù); 時, 上為增函數(shù).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          (Ⅰ)求不等式的解集;

          (Ⅱ)已知函數(shù)的最小值為,若實數(shù),求

          最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四面體中, ,點分別是棱的中點。

          (1)求證: 平面;

          (2)求證:四邊形為矩形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)求函數(shù)的單調(diào)增區(qū)間;

          (2)當(dāng)時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在三棱錐中,,平面和平面所成角為,則三棱錐外接球的體積為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)的內(nèi)角所對的邊分別是,且的等差中項.

          (Ⅰ)求角;

          (Ⅱ)設(shè),求周長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)討論函數(shù)的單調(diào)性;

          (2)若有兩個極值點,記過點的直線的斜率為,問:是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)R.

          (1)討論的單調(diào)性;

          (2)若有兩個零點,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案